AlkantarClanX12

Your IP : 18.221.167.11


Current Path : /opt/hc_python/lib/python3.8/site-packages/sqlalchemy/util/
Upload File :
Current File : //opt/hc_python/lib/python3.8/site-packages/sqlalchemy/util/_py_collections.py

# util/_py_collections.py
# Copyright (C) 2005-2024 the SQLAlchemy authors and contributors
# <see AUTHORS file>
#
# This module is part of SQLAlchemy and is released under
# the MIT License: https://www.opensource.org/licenses/mit-license.php
# mypy: allow-untyped-defs, allow-untyped-calls

from __future__ import annotations

from itertools import filterfalse
from typing import AbstractSet
from typing import Any
from typing import Callable
from typing import cast
from typing import Collection
from typing import Dict
from typing import Iterable
from typing import Iterator
from typing import List
from typing import Mapping
from typing import NoReturn
from typing import Optional
from typing import Set
from typing import Tuple
from typing import TYPE_CHECKING
from typing import TypeVar
from typing import Union

from ..util.typing import Self

_T = TypeVar("_T", bound=Any)
_S = TypeVar("_S", bound=Any)
_KT = TypeVar("_KT", bound=Any)
_VT = TypeVar("_VT", bound=Any)


class ReadOnlyContainer:
    __slots__ = ()

    def _readonly(self, *arg: Any, **kw: Any) -> NoReturn:
        raise TypeError(
            "%s object is immutable and/or readonly" % self.__class__.__name__
        )

    def _immutable(self, *arg: Any, **kw: Any) -> NoReturn:
        raise TypeError("%s object is immutable" % self.__class__.__name__)

    def __delitem__(self, key: Any) -> NoReturn:
        self._readonly()

    def __setitem__(self, key: Any, value: Any) -> NoReturn:
        self._readonly()

    def __setattr__(self, key: str, value: Any) -> NoReturn:
        self._readonly()


class ImmutableDictBase(ReadOnlyContainer, Dict[_KT, _VT]):
    if TYPE_CHECKING:

        def __new__(cls, *args: Any) -> Self: ...

        def __init__(cls, *args: Any): ...

    def _readonly(self, *arg: Any, **kw: Any) -> NoReturn:
        self._immutable()

    def clear(self) -> NoReturn:
        self._readonly()

    def pop(self, key: Any, default: Optional[Any] = None) -> NoReturn:
        self._readonly()

    def popitem(self) -> NoReturn:
        self._readonly()

    def setdefault(self, key: Any, default: Optional[Any] = None) -> NoReturn:
        self._readonly()

    def update(self, *arg: Any, **kw: Any) -> NoReturn:
        self._readonly()


class immutabledict(ImmutableDictBase[_KT, _VT]):
    def __new__(cls, *args):
        new = ImmutableDictBase.__new__(cls)
        dict.__init__(new, *args)
        return new

    def __init__(
        self, *args: Union[Mapping[_KT, _VT], Iterable[Tuple[_KT, _VT]]]
    ):
        pass

    def __reduce__(self):
        return immutabledict, (dict(self),)

    def union(
        self, __d: Optional[Mapping[_KT, _VT]] = None
    ) -> immutabledict[_KT, _VT]:
        if not __d:
            return self

        new = ImmutableDictBase.__new__(self.__class__)
        dict.__init__(new, self)
        dict.update(new, __d)  # type: ignore
        return new

    def _union_w_kw(
        self, __d: Optional[Mapping[_KT, _VT]] = None, **kw: _VT
    ) -> immutabledict[_KT, _VT]:
        # not sure if C version works correctly w/ this yet
        if not __d and not kw:
            return self

        new = ImmutableDictBase.__new__(self.__class__)
        dict.__init__(new, self)
        if __d:
            dict.update(new, __d)  # type: ignore
        dict.update(new, kw)  # type: ignore
        return new

    def merge_with(
        self, *dicts: Optional[Mapping[_KT, _VT]]
    ) -> immutabledict[_KT, _VT]:
        new = None
        for d in dicts:
            if d:
                if new is None:
                    new = ImmutableDictBase.__new__(self.__class__)
                    dict.__init__(new, self)
                dict.update(new, d)  # type: ignore
        if new is None:
            return self

        return new

    def __repr__(self) -> str:
        return "immutabledict(%s)" % dict.__repr__(self)

    # PEP 584
    def __ior__(self, __value: Any) -> NoReturn:  # type: ignore
        self._readonly()

    def __or__(  # type: ignore[override]
        self, __value: Mapping[_KT, _VT]
    ) -> immutabledict[_KT, _VT]:
        return immutabledict(
            super().__or__(__value),  # type: ignore[call-overload]
        )

    def __ror__(  # type: ignore[override]
        self, __value: Mapping[_KT, _VT]
    ) -> immutabledict[_KT, _VT]:
        return immutabledict(
            super().__ror__(__value),  # type: ignore[call-overload]
        )


class OrderedSet(Set[_T]):
    __slots__ = ("_list",)

    _list: List[_T]

    def __init__(self, d: Optional[Iterable[_T]] = None) -> None:
        if d is not None:
            self._list = unique_list(d)
            super().update(self._list)
        else:
            self._list = []

    def copy(self) -> OrderedSet[_T]:
        cp = self.__class__()
        cp._list = self._list.copy()
        set.update(cp, cp._list)
        return cp

    def add(self, element: _T) -> None:
        if element not in self:
            self._list.append(element)
        super().add(element)

    def remove(self, element: _T) -> None:
        super().remove(element)
        self._list.remove(element)

    def pop(self) -> _T:
        try:
            value = self._list.pop()
        except IndexError:
            raise KeyError("pop from an empty set") from None
        super().remove(value)
        return value

    def insert(self, pos: int, element: _T) -> None:
        if element not in self:
            self._list.insert(pos, element)
        super().add(element)

    def discard(self, element: _T) -> None:
        if element in self:
            self._list.remove(element)
            super().remove(element)

    def clear(self) -> None:
        super().clear()
        self._list = []

    def __getitem__(self, key: int) -> _T:
        return self._list[key]

    def __iter__(self) -> Iterator[_T]:
        return iter(self._list)

    def __add__(self, other: Iterator[_T]) -> OrderedSet[_T]:
        return self.union(other)

    def __repr__(self) -> str:
        return "%s(%r)" % (self.__class__.__name__, self._list)

    __str__ = __repr__

    def update(self, *iterables: Iterable[_T]) -> None:
        for iterable in iterables:
            for e in iterable:
                if e not in self:
                    self._list.append(e)
                    super().add(e)

    def __ior__(self, other: AbstractSet[_S]) -> OrderedSet[Union[_T, _S]]:
        self.update(other)
        return self

    def union(self, *other: Iterable[_S]) -> OrderedSet[Union[_T, _S]]:
        result: OrderedSet[Union[_T, _S]] = self.copy()
        result.update(*other)
        return result

    def __or__(self, other: AbstractSet[_S]) -> OrderedSet[Union[_T, _S]]:
        return self.union(other)

    def intersection(self, *other: Iterable[Any]) -> OrderedSet[_T]:
        other_set: Set[Any] = set()
        other_set.update(*other)
        return self.__class__(a for a in self if a in other_set)

    def __and__(self, other: AbstractSet[object]) -> OrderedSet[_T]:
        return self.intersection(other)

    def symmetric_difference(self, other: Iterable[_T]) -> OrderedSet[_T]:
        collection: Collection[_T]
        if isinstance(other, set):
            collection = other_set = other
        elif isinstance(other, Collection):
            collection = other
            other_set = set(other)
        else:
            collection = list(other)
            other_set = set(collection)
        result = self.__class__(a for a in self if a not in other_set)
        result.update(a for a in collection if a not in self)
        return result

    def __xor__(self, other: AbstractSet[_S]) -> OrderedSet[Union[_T, _S]]:
        return cast(OrderedSet[Union[_T, _S]], self).symmetric_difference(
            other
        )

    def difference(self, *other: Iterable[Any]) -> OrderedSet[_T]:
        other_set = super().difference(*other)
        return self.__class__(a for a in self._list if a in other_set)

    def __sub__(self, other: AbstractSet[Optional[_T]]) -> OrderedSet[_T]:
        return self.difference(other)

    def intersection_update(self, *other: Iterable[Any]) -> None:
        super().intersection_update(*other)
        self._list = [a for a in self._list if a in self]

    def __iand__(self, other: AbstractSet[object]) -> OrderedSet[_T]:
        self.intersection_update(other)
        return self

    def symmetric_difference_update(self, other: Iterable[Any]) -> None:
        collection = other if isinstance(other, Collection) else list(other)
        super().symmetric_difference_update(collection)
        self._list = [a for a in self._list if a in self]
        self._list += [a for a in collection if a in self]

    def __ixor__(self, other: AbstractSet[_S]) -> OrderedSet[Union[_T, _S]]:
        self.symmetric_difference_update(other)
        return cast(OrderedSet[Union[_T, _S]], self)

    def difference_update(self, *other: Iterable[Any]) -> None:
        super().difference_update(*other)
        self._list = [a for a in self._list if a in self]

    def __isub__(self, other: AbstractSet[Optional[_T]]) -> OrderedSet[_T]:  # type: ignore  # noqa: E501
        self.difference_update(other)
        return self


class IdentitySet:
    """A set that considers only object id() for uniqueness.

    This strategy has edge cases for builtin types- it's possible to have
    two 'foo' strings in one of these sets, for example.  Use sparingly.

    """

    _members: Dict[int, Any]

    def __init__(self, iterable: Optional[Iterable[Any]] = None):
        self._members = dict()
        if iterable:
            self.update(iterable)

    def add(self, value: Any) -> None:
        self._members[id(value)] = value

    def __contains__(self, value: Any) -> bool:
        return id(value) in self._members

    def remove(self, value: Any) -> None:
        del self._members[id(value)]

    def discard(self, value: Any) -> None:
        try:
            self.remove(value)
        except KeyError:
            pass

    def pop(self) -> Any:
        try:
            pair = self._members.popitem()
            return pair[1]
        except KeyError:
            raise KeyError("pop from an empty set")

    def clear(self) -> None:
        self._members.clear()

    def __eq__(self, other: Any) -> bool:
        if isinstance(other, IdentitySet):
            return self._members == other._members
        else:
            return False

    def __ne__(self, other: Any) -> bool:
        if isinstance(other, IdentitySet):
            return self._members != other._members
        else:
            return True

    def issubset(self, iterable: Iterable[Any]) -> bool:
        if isinstance(iterable, self.__class__):
            other = iterable
        else:
            other = self.__class__(iterable)

        if len(self) > len(other):
            return False
        for m in filterfalse(
            other._members.__contains__, iter(self._members.keys())
        ):
            return False
        return True

    def __le__(self, other: Any) -> bool:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.issubset(other)

    def __lt__(self, other: Any) -> bool:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return len(self) < len(other) and self.issubset(other)

    def issuperset(self, iterable: Iterable[Any]) -> bool:
        if isinstance(iterable, self.__class__):
            other = iterable
        else:
            other = self.__class__(iterable)

        if len(self) < len(other):
            return False

        for m in filterfalse(
            self._members.__contains__, iter(other._members.keys())
        ):
            return False
        return True

    def __ge__(self, other: Any) -> bool:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.issuperset(other)

    def __gt__(self, other: Any) -> bool:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return len(self) > len(other) and self.issuperset(other)

    def union(self, iterable: Iterable[Any]) -> IdentitySet:
        result = self.__class__()
        members = self._members
        result._members.update(members)
        result._members.update((id(obj), obj) for obj in iterable)
        return result

    def __or__(self, other: Any) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.union(other)

    def update(self, iterable: Iterable[Any]) -> None:
        self._members.update((id(obj), obj) for obj in iterable)

    def __ior__(self, other: Any) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.update(other)
        return self

    def difference(self, iterable: Iterable[Any]) -> IdentitySet:
        result = self.__new__(self.__class__)
        other: Collection[Any]

        if isinstance(iterable, self.__class__):
            other = iterable._members
        else:
            other = {id(obj) for obj in iterable}
        result._members = {
            k: v for k, v in self._members.items() if k not in other
        }
        return result

    def __sub__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.difference(other)

    def difference_update(self, iterable: Iterable[Any]) -> None:
        self._members = self.difference(iterable)._members

    def __isub__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.difference_update(other)
        return self

    def intersection(self, iterable: Iterable[Any]) -> IdentitySet:
        result = self.__new__(self.__class__)

        other: Collection[Any]

        if isinstance(iterable, self.__class__):
            other = iterable._members
        else:
            other = {id(obj) for obj in iterable}
        result._members = {
            k: v for k, v in self._members.items() if k in other
        }
        return result

    def __and__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.intersection(other)

    def intersection_update(self, iterable: Iterable[Any]) -> None:
        self._members = self.intersection(iterable)._members

    def __iand__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.intersection_update(other)
        return self

    def symmetric_difference(self, iterable: Iterable[Any]) -> IdentitySet:
        result = self.__new__(self.__class__)
        if isinstance(iterable, self.__class__):
            other = iterable._members
        else:
            other = {id(obj): obj for obj in iterable}
        result._members = {
            k: v for k, v in self._members.items() if k not in other
        }
        result._members.update(
            (k, v) for k, v in other.items() if k not in self._members
        )
        return result

    def __xor__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        return self.symmetric_difference(other)

    def symmetric_difference_update(self, iterable: Iterable[Any]) -> None:
        self._members = self.symmetric_difference(iterable)._members

    def __ixor__(self, other: IdentitySet) -> IdentitySet:
        if not isinstance(other, IdentitySet):
            return NotImplemented
        self.symmetric_difference(other)
        return self

    def copy(self) -> IdentitySet:
        result = self.__new__(self.__class__)
        result._members = self._members.copy()
        return result

    __copy__ = copy

    def __len__(self) -> int:
        return len(self._members)

    def __iter__(self) -> Iterator[Any]:
        return iter(self._members.values())

    def __hash__(self) -> NoReturn:
        raise TypeError("set objects are unhashable")

    def __repr__(self) -> str:
        return "%s(%r)" % (type(self).__name__, list(self._members.values()))


def unique_list(
    seq: Iterable[_T], hashfunc: Optional[Callable[[_T], int]] = None
) -> List[_T]:
    seen: Set[Any] = set()
    seen_add = seen.add
    if not hashfunc:
        return [x for x in seq if x not in seen and not seen_add(x)]
    else:
        return [
            x
            for x in seq
            if hashfunc(x) not in seen and not seen_add(hashfunc(x))
        ]