AlkantarClanX12
Current Path : /opt/hc_python/lib/python3.8/site-packages/sqlalchemy/sql/ |
Current File : //opt/hc_python/lib/python3.8/site-packages/sqlalchemy/sql/selectable.py |
# sql/selectable.py # Copyright (C) 2005-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php """The :class:`_expression.FromClause` class of SQL expression elements, representing SQL tables and derived rowsets. """ from __future__ import annotations import collections from enum import Enum import itertools from typing import AbstractSet from typing import Any as TODO_Any from typing import Any from typing import Callable from typing import cast from typing import Dict from typing import Generic from typing import Iterable from typing import Iterator from typing import List from typing import NamedTuple from typing import NoReturn from typing import Optional from typing import overload from typing import Sequence from typing import Set from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union from . import cache_key from . import coercions from . import operators from . import roles from . import traversals from . import type_api from . import visitors from ._typing import _ColumnsClauseArgument from ._typing import _no_kw from ._typing import _TP from ._typing import is_column_element from ._typing import is_select_statement from ._typing import is_subquery from ._typing import is_table from ._typing import is_text_clause from .annotation import Annotated from .annotation import SupportsCloneAnnotations from .base import _clone from .base import _cloned_difference from .base import _cloned_intersection from .base import _entity_namespace_key from .base import _EntityNamespace from .base import _expand_cloned from .base import _from_objects from .base import _generative from .base import _never_select_column from .base import _NoArg from .base import _select_iterables from .base import CacheableOptions from .base import ColumnCollection from .base import ColumnSet from .base import CompileState from .base import DedupeColumnCollection from .base import Executable from .base import Generative from .base import HasCompileState from .base import HasMemoized from .base import Immutable from .coercions import _document_text_coercion from .elements import _anonymous_label from .elements import BindParameter from .elements import BooleanClauseList from .elements import ClauseElement from .elements import ClauseList from .elements import ColumnClause from .elements import ColumnElement from .elements import DQLDMLClauseElement from .elements import GroupedElement from .elements import literal_column from .elements import TableValuedColumn from .elements import UnaryExpression from .operators import OperatorType from .sqltypes import NULLTYPE from .visitors import _TraverseInternalsType from .visitors import InternalTraversal from .visitors import prefix_anon_map from .. import exc from .. import util from ..util import HasMemoized_ro_memoized_attribute from ..util.typing import Literal from ..util.typing import Protocol from ..util.typing import Self and_ = BooleanClauseList.and_ _T = TypeVar("_T", bound=Any) if TYPE_CHECKING: from ._typing import _ColumnExpressionArgument from ._typing import _ColumnExpressionOrStrLabelArgument from ._typing import _FromClauseArgument from ._typing import _JoinTargetArgument from ._typing import _LimitOffsetType from ._typing import _MAYBE_ENTITY from ._typing import _NOT_ENTITY from ._typing import _OnClauseArgument from ._typing import _SelectStatementForCompoundArgument from ._typing import _T0 from ._typing import _T1 from ._typing import _T2 from ._typing import _T3 from ._typing import _T4 from ._typing import _T5 from ._typing import _T6 from ._typing import _T7 from ._typing import _TextCoercedExpressionArgument from ._typing import _TypedColumnClauseArgument as _TCCA from ._typing import _TypeEngineArgument from .base import _AmbiguousTableNameMap from .base import ExecutableOption from .base import ReadOnlyColumnCollection from .cache_key import _CacheKeyTraversalType from .compiler import SQLCompiler from .dml import Delete from .dml import Update from .elements import BinaryExpression from .elements import KeyedColumnElement from .elements import Label from .elements import NamedColumn from .elements import TextClause from .functions import Function from .schema import ForeignKey from .schema import ForeignKeyConstraint from .sqltypes import TableValueType from .type_api import TypeEngine from .visitors import _CloneCallableType _ColumnsClauseElement = Union["FromClause", ColumnElement[Any], "TextClause"] _LabelConventionCallable = Callable[ [Union["ColumnElement[Any]", "TextClause"]], Optional[str] ] class _JoinTargetProtocol(Protocol): @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: ... @util.ro_non_memoized_property def entity_namespace(self) -> _EntityNamespace: ... _JoinTargetElement = Union["FromClause", _JoinTargetProtocol] _OnClauseElement = Union["ColumnElement[bool]", _JoinTargetProtocol] _ForUpdateOfArgument = Union[ # single column, Table, ORM Entity Union[ "_ColumnExpressionArgument[Any]", "_FromClauseArgument", ], # or sequence of single column elements Sequence["_ColumnExpressionArgument[Any]"], ] _SetupJoinsElement = Tuple[ _JoinTargetElement, Optional[_OnClauseElement], Optional["FromClause"], Dict[str, Any], ] _SelectIterable = Iterable[Union["ColumnElement[Any]", "TextClause"]] class _OffsetLimitParam(BindParameter[int]): inherit_cache = True @property def _limit_offset_value(self) -> Optional[int]: return self.effective_value class ReturnsRows(roles.ReturnsRowsRole, DQLDMLClauseElement): """The base-most class for Core constructs that have some concept of columns that can represent rows. While the SELECT statement and TABLE are the primary things we think of in this category, DML like INSERT, UPDATE and DELETE can also specify RETURNING which means they can be used in CTEs and other forms, and PostgreSQL has functions that return rows also. .. versionadded:: 1.4 """ _is_returns_rows = True # sub-elements of returns_rows _is_from_clause = False _is_select_base = False _is_select_statement = False _is_lateral = False @property def selectable(self) -> ReturnsRows: return self @util.ro_non_memoized_property def _all_selected_columns(self) -> _SelectIterable: """A sequence of column expression objects that represents the "selected" columns of this :class:`_expression.ReturnsRows`. This is typically equivalent to .exported_columns except it is delivered in the form of a straight sequence and not keyed :class:`_expression.ColumnCollection`. """ raise NotImplementedError() def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: """Return ``True`` if this :class:`.ReturnsRows` is 'derived' from the given :class:`.FromClause`. An example would be an Alias of a Table is derived from that Table. """ raise NotImplementedError() def _generate_fromclause_column_proxies( self, fromclause: FromClause ) -> None: """Populate columns into an :class:`.AliasedReturnsRows` object.""" raise NotImplementedError() def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: """reset internal collections for an incoming column being added.""" raise NotImplementedError() @property def exported_columns(self) -> ReadOnlyColumnCollection[Any, Any]: """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.ReturnsRows`. The "exported" columns represent the collection of :class:`_expression.ColumnElement` expressions that are rendered by this SQL construct. There are primary varieties which are the "FROM clause columns" of a FROM clause, such as a table, join, or subquery, the "SELECTed columns", which are the columns in the "columns clause" of a SELECT statement, and the RETURNING columns in a DML statement.. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.FromClause.exported_columns` :attr:`_expression.SelectBase.exported_columns` """ raise NotImplementedError() class ExecutableReturnsRows(Executable, ReturnsRows): """base for executable statements that return rows.""" class TypedReturnsRows(ExecutableReturnsRows, Generic[_TP]): """base for executable statements that return rows.""" class Selectable(ReturnsRows): """Mark a class as being selectable.""" __visit_name__ = "selectable" is_selectable = True def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: raise NotImplementedError() def lateral(self, name: Optional[str] = None) -> LateralFromClause: """Return a LATERAL alias of this :class:`_expression.Selectable`. The return value is the :class:`_expression.Lateral` construct also provided by the top-level :func:`_expression.lateral` function. .. seealso:: :ref:`tutorial_lateral_correlation` - overview of usage. """ return Lateral._construct(self, name=name) @util.deprecated( "1.4", message="The :meth:`.Selectable.replace_selectable` method is " "deprecated, and will be removed in a future release. Similar " "functionality is available via the sqlalchemy.sql.visitors module.", ) @util.preload_module("sqlalchemy.sql.util") def replace_selectable(self, old: FromClause, alias: Alias) -> Self: """Replace all occurrences of :class:`_expression.FromClause` 'old' with the given :class:`_expression.Alias` object, returning a copy of this :class:`_expression.FromClause`. """ return util.preloaded.sql_util.ClauseAdapter(alias).traverse(self) def corresponding_column( self, column: KeyedColumnElement[Any], require_embedded: bool = False ) -> Optional[KeyedColumnElement[Any]]: """Given a :class:`_expression.ColumnElement`, return the exported :class:`_expression.ColumnElement` object from the :attr:`_expression.Selectable.exported_columns` collection of this :class:`_expression.Selectable` which corresponds to that original :class:`_expression.ColumnElement` via a common ancestor column. :param column: the target :class:`_expression.ColumnElement` to be matched. :param require_embedded: only return corresponding columns for the given :class:`_expression.ColumnElement`, if the given :class:`_expression.ColumnElement` is actually present within a sub-element of this :class:`_expression.Selectable`. Normally the column will match if it merely shares a common ancestor with one of the exported columns of this :class:`_expression.Selectable`. .. seealso:: :attr:`_expression.Selectable.exported_columns` - the :class:`_expression.ColumnCollection` that is used for the operation. :meth:`_expression.ColumnCollection.corresponding_column` - implementation method. """ return self.exported_columns.corresponding_column( column, require_embedded ) class HasPrefixes: _prefixes: Tuple[Tuple[DQLDMLClauseElement, str], ...] = () _has_prefixes_traverse_internals: _TraverseInternalsType = [ ("_prefixes", InternalTraversal.dp_prefix_sequence) ] @_generative @_document_text_coercion( "prefixes", ":meth:`_expression.HasPrefixes.prefix_with`", ":paramref:`.HasPrefixes.prefix_with.*prefixes`", ) def prefix_with( self, *prefixes: _TextCoercedExpressionArgument[Any], dialect: str = "*", ) -> Self: r"""Add one or more expressions following the statement keyword, i.e. SELECT, INSERT, UPDATE, or DELETE. Generative. This is used to support backend-specific prefix keywords such as those provided by MySQL. E.g.:: stmt = table.insert().prefix_with("LOW_PRIORITY", dialect="mysql") # MySQL 5.7 optimizer hints stmt = select(table).prefix_with( "/*+ BKA(t1) */", dialect="mysql") Multiple prefixes can be specified by multiple calls to :meth:`_expression.HasPrefixes.prefix_with`. :param \*prefixes: textual or :class:`_expression.ClauseElement` construct which will be rendered following the INSERT, UPDATE, or DELETE keyword. :param dialect: optional string dialect name which will limit rendering of this prefix to only that dialect. """ self._prefixes = self._prefixes + tuple( [ (coercions.expect(roles.StatementOptionRole, p), dialect) for p in prefixes ] ) return self class HasSuffixes: _suffixes: Tuple[Tuple[DQLDMLClauseElement, str], ...] = () _has_suffixes_traverse_internals: _TraverseInternalsType = [ ("_suffixes", InternalTraversal.dp_prefix_sequence) ] @_generative @_document_text_coercion( "suffixes", ":meth:`_expression.HasSuffixes.suffix_with`", ":paramref:`.HasSuffixes.suffix_with.*suffixes`", ) def suffix_with( self, *suffixes: _TextCoercedExpressionArgument[Any], dialect: str = "*", ) -> Self: r"""Add one or more expressions following the statement as a whole. This is used to support backend-specific suffix keywords on certain constructs. E.g.:: stmt = select(col1, col2).cte().suffix_with( "cycle empno set y_cycle to 1 default 0", dialect="oracle") Multiple suffixes can be specified by multiple calls to :meth:`_expression.HasSuffixes.suffix_with`. :param \*suffixes: textual or :class:`_expression.ClauseElement` construct which will be rendered following the target clause. :param dialect: Optional string dialect name which will limit rendering of this suffix to only that dialect. """ self._suffixes = self._suffixes + tuple( [ (coercions.expect(roles.StatementOptionRole, p), dialect) for p in suffixes ] ) return self class HasHints: _hints: util.immutabledict[Tuple[FromClause, str], str] = ( util.immutabledict() ) _statement_hints: Tuple[Tuple[str, str], ...] = () _has_hints_traverse_internals: _TraverseInternalsType = [ ("_statement_hints", InternalTraversal.dp_statement_hint_list), ("_hints", InternalTraversal.dp_table_hint_list), ] def with_statement_hint(self, text: str, dialect_name: str = "*") -> Self: """Add a statement hint to this :class:`_expression.Select` or other selectable object. This method is similar to :meth:`_expression.Select.with_hint` except that it does not require an individual table, and instead applies to the statement as a whole. Hints here are specific to the backend database and may include directives such as isolation levels, file directives, fetch directives, etc. .. seealso:: :meth:`_expression.Select.with_hint` :meth:`_expression.Select.prefix_with` - generic SELECT prefixing which also can suit some database-specific HINT syntaxes such as MySQL optimizer hints """ return self._with_hint(None, text, dialect_name) @_generative def with_hint( self, selectable: _FromClauseArgument, text: str, dialect_name: str = "*", ) -> Self: r"""Add an indexing or other executional context hint for the given selectable to this :class:`_expression.Select` or other selectable object. The text of the hint is rendered in the appropriate location for the database backend in use, relative to the given :class:`_schema.Table` or :class:`_expression.Alias` passed as the ``selectable`` argument. The dialect implementation typically uses Python string substitution syntax with the token ``%(name)s`` to render the name of the table or alias. E.g. when using Oracle, the following:: select(mytable).\ with_hint(mytable, "index(%(name)s ix_mytable)") Would render SQL as:: select /*+ index(mytable ix_mytable) */ ... from mytable The ``dialect_name`` option will limit the rendering of a particular hint to a particular backend. Such as, to add hints for both Oracle and Sybase simultaneously:: select(mytable).\ with_hint(mytable, "index(%(name)s ix_mytable)", 'oracle').\ with_hint(mytable, "WITH INDEX ix_mytable", 'mssql') .. seealso:: :meth:`_expression.Select.with_statement_hint` """ return self._with_hint(selectable, text, dialect_name) def _with_hint( self, selectable: Optional[_FromClauseArgument], text: str, dialect_name: str, ) -> Self: if selectable is None: self._statement_hints += ((dialect_name, text),) else: self._hints = self._hints.union( { ( coercions.expect(roles.FromClauseRole, selectable), dialect_name, ): text } ) return self class FromClause(roles.AnonymizedFromClauseRole, Selectable): """Represent an element that can be used within the ``FROM`` clause of a ``SELECT`` statement. The most common forms of :class:`_expression.FromClause` are the :class:`_schema.Table` and the :func:`_expression.select` constructs. Key features common to all :class:`_expression.FromClause` objects include: * a :attr:`.c` collection, which provides per-name access to a collection of :class:`_expression.ColumnElement` objects. * a :attr:`.primary_key` attribute, which is a collection of all those :class:`_expression.ColumnElement` objects that indicate the ``primary_key`` flag. * Methods to generate various derivations of a "from" clause, including :meth:`_expression.FromClause.alias`, :meth:`_expression.FromClause.join`, :meth:`_expression.FromClause.select`. """ __visit_name__ = "fromclause" named_with_column = False @util.ro_non_memoized_property def _hide_froms(self) -> Iterable[FromClause]: return () _is_clone_of: Optional[FromClause] _columns: ColumnCollection[Any, Any] schema: Optional[str] = None """Define the 'schema' attribute for this :class:`_expression.FromClause`. This is typically ``None`` for most objects except that of :class:`_schema.Table`, where it is taken as the value of the :paramref:`_schema.Table.schema` argument. """ is_selectable = True _is_from_clause = True _is_join = False _use_schema_map = False def select(self) -> Select[Any]: r"""Return a SELECT of this :class:`_expression.FromClause`. e.g.:: stmt = some_table.select().where(some_table.c.id == 5) .. seealso:: :func:`_expression.select` - general purpose method which allows for arbitrary column lists. """ return Select(self) def join( self, right: _FromClauseArgument, onclause: Optional[_ColumnExpressionArgument[bool]] = None, isouter: bool = False, full: bool = False, ) -> Join: """Return a :class:`_expression.Join` from this :class:`_expression.FromClause` to another :class:`FromClause`. E.g.:: from sqlalchemy import join j = user_table.join(address_table, user_table.c.id == address_table.c.user_id) stmt = select(user_table).select_from(j) would emit SQL along the lines of:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id :param right: the right side of the join; this is any :class:`_expression.FromClause` object such as a :class:`_schema.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`_expression.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param isouter: if True, render a LEFT OUTER JOIN, instead of JOIN. :param full: if True, render a FULL OUTER JOIN, instead of LEFT OUTER JOIN. Implies :paramref:`.FromClause.join.isouter`. .. seealso:: :func:`_expression.join` - standalone function :class:`_expression.Join` - the type of object produced """ return Join(self, right, onclause, isouter, full) def outerjoin( self, right: _FromClauseArgument, onclause: Optional[_ColumnExpressionArgument[bool]] = None, full: bool = False, ) -> Join: """Return a :class:`_expression.Join` from this :class:`_expression.FromClause` to another :class:`FromClause`, with the "isouter" flag set to True. E.g.:: from sqlalchemy import outerjoin j = user_table.outerjoin(address_table, user_table.c.id == address_table.c.user_id) The above is equivalent to:: j = user_table.join( address_table, user_table.c.id == address_table.c.user_id, isouter=True) :param right: the right side of the join; this is any :class:`_expression.FromClause` object such as a :class:`_schema.Table` object, and may also be a selectable-compatible object such as an ORM-mapped class. :param onclause: a SQL expression representing the ON clause of the join. If left at ``None``, :meth:`_expression.FromClause.join` will attempt to join the two tables based on a foreign key relationship. :param full: if True, render a FULL OUTER JOIN, instead of LEFT OUTER JOIN. .. seealso:: :meth:`_expression.FromClause.join` :class:`_expression.Join` """ return Join(self, right, onclause, True, full) def alias( self, name: Optional[str] = None, flat: bool = False ) -> NamedFromClause: """Return an alias of this :class:`_expression.FromClause`. E.g.:: a2 = some_table.alias('a2') The above code creates an :class:`_expression.Alias` object which can be used as a FROM clause in any SELECT statement. .. seealso:: :ref:`tutorial_using_aliases` :func:`_expression.alias` """ return Alias._construct(self, name=name) def tablesample( self, sampling: Union[float, Function[Any]], name: Optional[str] = None, seed: Optional[roles.ExpressionElementRole[Any]] = None, ) -> TableSample: """Return a TABLESAMPLE alias of this :class:`_expression.FromClause`. The return value is the :class:`_expression.TableSample` construct also provided by the top-level :func:`_expression.tablesample` function. .. seealso:: :func:`_expression.tablesample` - usage guidelines and parameters """ return TableSample._construct( self, sampling=sampling, name=name, seed=seed ) def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: """Return ``True`` if this :class:`_expression.FromClause` is 'derived' from the given ``FromClause``. An example would be an Alias of a Table is derived from that Table. """ # this is essentially an "identity" check in the base class. # Other constructs override this to traverse through # contained elements. return fromclause in self._cloned_set def _is_lexical_equivalent(self, other: FromClause) -> bool: """Return ``True`` if this :class:`_expression.FromClause` and the other represent the same lexical identity. This tests if either one is a copy of the other, or if they are the same via annotation identity. """ return bool(self._cloned_set.intersection(other._cloned_set)) @util.ro_non_memoized_property def description(self) -> str: """A brief description of this :class:`_expression.FromClause`. Used primarily for error message formatting. """ return getattr(self, "name", self.__class__.__name__ + " object") def _generate_fromclause_column_proxies( self, fromclause: FromClause ) -> None: fromclause._columns._populate_separate_keys( col._make_proxy(fromclause) for col in self.c ) @util.ro_non_memoized_property def exported_columns( self, ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.Selectable`. The "exported" columns for a :class:`_expression.FromClause` object are synonymous with the :attr:`_expression.FromClause.columns` collection. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.Selectable.exported_columns` :attr:`_expression.SelectBase.exported_columns` """ return self.c @util.ro_non_memoized_property def columns( self, ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: """A named-based collection of :class:`_expression.ColumnElement` objects maintained by this :class:`_expression.FromClause`. The :attr:`.columns`, or :attr:`.c` collection, is the gateway to the construction of SQL expressions using table-bound or other selectable-bound columns:: select(mytable).where(mytable.c.somecolumn == 5) :return: a :class:`.ColumnCollection` object. """ return self.c @util.ro_memoized_property def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: """ A synonym for :attr:`.FromClause.columns` :return: a :class:`.ColumnCollection` """ if "_columns" not in self.__dict__: self._init_collections() self._populate_column_collection() return self._columns.as_readonly() @util.ro_non_memoized_property def entity_namespace(self) -> _EntityNamespace: """Return a namespace used for name-based access in SQL expressions. This is the namespace that is used to resolve "filter_by()" type expressions, such as:: stmt.filter_by(address='some address') It defaults to the ``.c`` collection, however internally it can be overridden using the "entity_namespace" annotation to deliver alternative results. """ return self.c @util.ro_memoized_property def primary_key(self) -> Iterable[NamedColumn[Any]]: """Return the iterable collection of :class:`_schema.Column` objects which comprise the primary key of this :class:`_selectable.FromClause`. For a :class:`_schema.Table` object, this collection is represented by the :class:`_schema.PrimaryKeyConstraint` which itself is an iterable collection of :class:`_schema.Column` objects. """ self._init_collections() self._populate_column_collection() return self.primary_key @util.ro_memoized_property def foreign_keys(self) -> Iterable[ForeignKey]: """Return the collection of :class:`_schema.ForeignKey` marker objects which this FromClause references. Each :class:`_schema.ForeignKey` is a member of a :class:`_schema.Table`-wide :class:`_schema.ForeignKeyConstraint`. .. seealso:: :attr:`_schema.Table.foreign_key_constraints` """ self._init_collections() self._populate_column_collection() return self.foreign_keys def _reset_column_collection(self) -> None: """Reset the attributes linked to the ``FromClause.c`` attribute. This collection is separate from all the other memoized things as it has shown to be sensitive to being cleared out in situations where enclosing code, typically in a replacement traversal scenario, has already established strong relationships with the exported columns. The collection is cleared for the case where a table is having a column added to it as well as within a Join during copy internals. """ for key in ["_columns", "columns", "c", "primary_key", "foreign_keys"]: self.__dict__.pop(key, None) @util.ro_non_memoized_property def _select_iterable(self) -> _SelectIterable: return (c for c in self.c if not _never_select_column(c)) def _init_collections(self) -> None: assert "_columns" not in self.__dict__ assert "primary_key" not in self.__dict__ assert "foreign_keys" not in self.__dict__ self._columns = ColumnCollection() self.primary_key = ColumnSet() # type: ignore self.foreign_keys = set() # type: ignore @property def _cols_populated(self) -> bool: return "_columns" in self.__dict__ def _populate_column_collection(self) -> None: """Called on subclasses to establish the .c collection. Each implementation has a different way of establishing this collection. """ def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: """Given a column added to the .c collection of an underlying selectable, produce the local version of that column, assuming this selectable ultimately should proxy this column. this is used to "ping" a derived selectable to add a new column to its .c. collection when a Column has been added to one of the Table objects it ultimately derives from. If the given selectable hasn't populated its .c. collection yet, it should at least pass on the message to the contained selectables, but it will return None. This method is currently used by Declarative to allow Table columns to be added to a partially constructed inheritance mapping that may have already produced joins. The method isn't public right now, as the full span of implications and/or caveats aren't yet clear. It's also possible that this functionality could be invoked by default via an event, which would require that selectables maintain a weak referencing collection of all derivations. """ self._reset_column_collection() def _anonymous_fromclause( self, *, name: Optional[str] = None, flat: bool = False ) -> FromClause: return self.alias(name=name) if TYPE_CHECKING: def self_group( self, against: Optional[OperatorType] = None ) -> Union[FromGrouping, Self]: ... class NamedFromClause(FromClause): """A :class:`.FromClause` that has a name. Examples include tables, subqueries, CTEs, aliased tables. .. versionadded:: 2.0 """ named_with_column = True name: str @util.preload_module("sqlalchemy.sql.sqltypes") def table_valued(self) -> TableValuedColumn[Any]: """Return a :class:`_sql.TableValuedColumn` object for this :class:`_expression.FromClause`. A :class:`_sql.TableValuedColumn` is a :class:`_sql.ColumnElement` that represents a complete row in a table. Support for this construct is backend dependent, and is supported in various forms by backends such as PostgreSQL, Oracle and SQL Server. E.g.: .. sourcecode:: pycon+sql >>> from sqlalchemy import select, column, func, table >>> a = table("a", column("id"), column("x"), column("y")) >>> stmt = select(func.row_to_json(a.table_valued())) >>> print(stmt) {printsql}SELECT row_to_json(a) AS row_to_json_1 FROM a .. versionadded:: 1.4.0b2 .. seealso:: :ref:`tutorial_functions` - in the :ref:`unified_tutorial` """ return TableValuedColumn(self, type_api.TABLEVALUE) class SelectLabelStyle(Enum): """Label style constants that may be passed to :meth:`_sql.Select.set_label_style`.""" LABEL_STYLE_NONE = 0 """Label style indicating no automatic labeling should be applied to the columns clause of a SELECT statement. Below, the columns named ``columna`` are both rendered as is, meaning that the name ``columna`` can only refer to the first occurrence of this name within a result set, as well as if the statement were used as a subquery: .. sourcecode:: pycon+sql >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_NONE >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_NONE)) {printsql}SELECT table1.columna, table1.columnb, table2.columna, table2.columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.Select.set_label_style` method. .. versionadded:: 1.4 """ # noqa: E501 LABEL_STYLE_TABLENAME_PLUS_COL = 1 """Label style indicating all columns should be labeled as ``<tablename>_<columnname>`` when generating the columns clause of a SELECT statement, to disambiguate same-named columns referenced from different tables, aliases, or subqueries. Below, all column names are given a label so that the two same-named columns ``columna`` are disambiguated as ``table1_columna`` and ``table2_columna``: .. sourcecode:: pycon+sql >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_TABLENAME_PLUS_COL >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL)) {printsql}SELECT table1.columna AS table1_columna, table1.columnb AS table1_columnb, table2.columna AS table2_columna, table2.columnc AS table2_columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.GenerativeSelect.set_label_style` method. Equivalent to the legacy method ``Select.apply_labels()``; :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` is SQLAlchemy's legacy auto-labeling style. :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` provides a less intrusive approach to disambiguation of same-named column expressions. .. versionadded:: 1.4 """ # noqa: E501 LABEL_STYLE_DISAMBIGUATE_ONLY = 2 """Label style indicating that columns with a name that conflicts with an existing name should be labeled with a semi-anonymizing label when generating the columns clause of a SELECT statement. Below, most column names are left unaffected, except for the second occurrence of the name ``columna``, which is labeled using the label ``columna_1`` to disambiguate it from that of ``tablea.columna``: .. sourcecode:: pycon+sql >>> from sqlalchemy import table, column, select, true, LABEL_STYLE_DISAMBIGUATE_ONLY >>> table1 = table("table1", column("columna"), column("columnb")) >>> table2 = table("table2", column("columna"), column("columnc")) >>> print(select(table1, table2).join(table2, true()).set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY)) {printsql}SELECT table1.columna, table1.columnb, table2.columna AS columna_1, table2.columnc FROM table1 JOIN table2 ON true Used with the :meth:`_sql.GenerativeSelect.set_label_style` method, :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` is the default labeling style for all SELECT statements outside of :term:`1.x style` ORM queries. .. versionadded:: 1.4 """ # noqa: E501 LABEL_STYLE_DEFAULT = LABEL_STYLE_DISAMBIGUATE_ONLY """The default label style, refers to :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY`. .. versionadded:: 1.4 """ LABEL_STYLE_LEGACY_ORM = 3 ( LABEL_STYLE_NONE, LABEL_STYLE_TABLENAME_PLUS_COL, LABEL_STYLE_DISAMBIGUATE_ONLY, _, ) = list(SelectLabelStyle) LABEL_STYLE_DEFAULT = LABEL_STYLE_DISAMBIGUATE_ONLY class Join(roles.DMLTableRole, FromClause): """Represent a ``JOIN`` construct between two :class:`_expression.FromClause` elements. The public constructor function for :class:`_expression.Join` is the module-level :func:`_expression.join()` function, as well as the :meth:`_expression.FromClause.join` method of any :class:`_expression.FromClause` (e.g. such as :class:`_schema.Table`). .. seealso:: :func:`_expression.join` :meth:`_expression.FromClause.join` """ __visit_name__ = "join" _traverse_internals: _TraverseInternalsType = [ ("left", InternalTraversal.dp_clauseelement), ("right", InternalTraversal.dp_clauseelement), ("onclause", InternalTraversal.dp_clauseelement), ("isouter", InternalTraversal.dp_boolean), ("full", InternalTraversal.dp_boolean), ] _is_join = True left: FromClause right: FromClause onclause: Optional[ColumnElement[bool]] isouter: bool full: bool def __init__( self, left: _FromClauseArgument, right: _FromClauseArgument, onclause: Optional[_OnClauseArgument] = None, isouter: bool = False, full: bool = False, ): """Construct a new :class:`_expression.Join`. The usual entrypoint here is the :func:`_expression.join` function or the :meth:`_expression.FromClause.join` method of any :class:`_expression.FromClause` object. """ # when deannotate was removed here, callcounts went up for ORM # compilation of eager joins, since there were more comparisons of # annotated objects. test_orm.py -> test_fetch_results # was therefore changed to show a more real-world use case, where the # compilation is cached; there's no change in post-cache callcounts. # callcounts for a single compilation in that particular test # that includes about eight joins about 1100 extra fn calls, from # 29200 -> 30373 self.left = coercions.expect( roles.FromClauseRole, left, ) self.right = coercions.expect( roles.FromClauseRole, right, ).self_group() if onclause is None: self.onclause = self._match_primaries(self.left, self.right) else: # note: taken from If91f61527236fd4d7ae3cad1f24c38be921c90ba # not merged yet self.onclause = coercions.expect( roles.OnClauseRole, onclause ).self_group(against=operators._asbool) self.isouter = isouter self.full = full @util.ro_non_memoized_property def description(self) -> str: return "Join object on %s(%d) and %s(%d)" % ( self.left.description, id(self.left), self.right.description, id(self.right), ) def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: return ( # use hash() to ensure direct comparison to annotated works # as well hash(fromclause) == hash(self) or self.left.is_derived_from(fromclause) or self.right.is_derived_from(fromclause) ) def self_group( self, against: Optional[OperatorType] = None ) -> FromGrouping: return FromGrouping(self) @util.preload_module("sqlalchemy.sql.util") def _populate_column_collection(self) -> None: sqlutil = util.preloaded.sql_util columns: List[KeyedColumnElement[Any]] = [c for c in self.left.c] + [ c for c in self.right.c ] self.primary_key.extend( # type: ignore sqlutil.reduce_columns( (c for c in columns if c.primary_key), self.onclause ) ) self._columns._populate_separate_keys( (col._tq_key_label, col) for col in columns ) self.foreign_keys.update( # type: ignore itertools.chain(*[col.foreign_keys for col in columns]) ) def _copy_internals( self, clone: _CloneCallableType = _clone, **kw: Any ) -> None: # see Select._copy_internals() for similar concept # here we pre-clone "left" and "right" so that we can # determine the new FROM clauses all_the_froms = set( itertools.chain( _from_objects(self.left), _from_objects(self.right), ) ) # run the clone on those. these will be placed in the # cache used by the clone function new_froms = {f: clone(f, **kw) for f in all_the_froms} # set up a special replace function that will replace for # ColumnClause with parent table referring to those # replaced FromClause objects def replace( obj: Union[BinaryExpression[Any], ColumnClause[Any]], **kw: Any, ) -> Optional[KeyedColumnElement[ColumnElement[Any]]]: if isinstance(obj, ColumnClause) and obj.table in new_froms: newelem = new_froms[obj.table].corresponding_column(obj) return newelem return None kw["replace"] = replace # run normal _copy_internals. the clones for # left and right will come from the clone function's # cache super()._copy_internals(clone=clone, **kw) self._reset_memoizations() def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: super()._refresh_for_new_column(column) self.left._refresh_for_new_column(column) self.right._refresh_for_new_column(column) def _match_primaries( self, left: FromClause, right: FromClause, ) -> ColumnElement[bool]: if isinstance(left, Join): left_right = left.right else: left_right = None return self._join_condition(left, right, a_subset=left_right) @classmethod def _join_condition( cls, a: FromClause, b: FromClause, *, a_subset: Optional[FromClause] = None, consider_as_foreign_keys: Optional[ AbstractSet[ColumnClause[Any]] ] = None, ) -> ColumnElement[bool]: """Create a join condition between two tables or selectables. See sqlalchemy.sql.util.join_condition() for full docs. """ constraints = cls._joincond_scan_left_right( a, a_subset, b, consider_as_foreign_keys ) if len(constraints) > 1: cls._joincond_trim_constraints( a, b, constraints, consider_as_foreign_keys ) if len(constraints) == 0: if isinstance(b, FromGrouping): hint = ( " Perhaps you meant to convert the right side to a " "subquery using alias()?" ) else: hint = "" raise exc.NoForeignKeysError( "Can't find any foreign key relationships " "between '%s' and '%s'.%s" % (a.description, b.description, hint) ) crit = [(x == y) for x, y in list(constraints.values())[0]] if len(crit) == 1: return crit[0] else: return and_(*crit) @classmethod def _can_join( cls, left: FromClause, right: FromClause, *, consider_as_foreign_keys: Optional[ AbstractSet[ColumnClause[Any]] ] = None, ) -> bool: if isinstance(left, Join): left_right = left.right else: left_right = None constraints = cls._joincond_scan_left_right( a=left, b=right, a_subset=left_right, consider_as_foreign_keys=consider_as_foreign_keys, ) return bool(constraints) @classmethod @util.preload_module("sqlalchemy.sql.util") def _joincond_scan_left_right( cls, a: FromClause, a_subset: Optional[FromClause], b: FromClause, consider_as_foreign_keys: Optional[AbstractSet[ColumnClause[Any]]], ) -> collections.defaultdict[ Optional[ForeignKeyConstraint], List[Tuple[ColumnClause[Any], ColumnClause[Any]]], ]: sql_util = util.preloaded.sql_util a = coercions.expect(roles.FromClauseRole, a) b = coercions.expect(roles.FromClauseRole, b) constraints: collections.defaultdict[ Optional[ForeignKeyConstraint], List[Tuple[ColumnClause[Any], ColumnClause[Any]]], ] = collections.defaultdict(list) for left in (a_subset, a): if left is None: continue for fk in sorted( b.foreign_keys, key=lambda fk: fk.parent._creation_order, ): if ( consider_as_foreign_keys is not None and fk.parent not in consider_as_foreign_keys ): continue try: col = fk.get_referent(left) except exc.NoReferenceError as nrte: table_names = {t.name for t in sql_util.find_tables(left)} if nrte.table_name in table_names: raise else: continue if col is not None: constraints[fk.constraint].append((col, fk.parent)) if left is not b: for fk in sorted( left.foreign_keys, key=lambda fk: fk.parent._creation_order, ): if ( consider_as_foreign_keys is not None and fk.parent not in consider_as_foreign_keys ): continue try: col = fk.get_referent(b) except exc.NoReferenceError as nrte: table_names = {t.name for t in sql_util.find_tables(b)} if nrte.table_name in table_names: raise else: continue if col is not None: constraints[fk.constraint].append((col, fk.parent)) if constraints: break return constraints @classmethod def _joincond_trim_constraints( cls, a: FromClause, b: FromClause, constraints: Dict[Any, Any], consider_as_foreign_keys: Optional[Any], ) -> None: # more than one constraint matched. narrow down the list # to include just those FKCs that match exactly to # "consider_as_foreign_keys". if consider_as_foreign_keys: for const in list(constraints): if {f.parent for f in const.elements} != set( consider_as_foreign_keys ): del constraints[const] # if still multiple constraints, but # they all refer to the exact same end result, use it. if len(constraints) > 1: dedupe = {tuple(crit) for crit in constraints.values()} if len(dedupe) == 1: key = list(constraints)[0] constraints = {key: constraints[key]} if len(constraints) != 1: raise exc.AmbiguousForeignKeysError( "Can't determine join between '%s' and '%s'; " "tables have more than one foreign key " "constraint relationship between them. " "Please specify the 'onclause' of this " "join explicitly." % (a.description, b.description) ) def select(self) -> Select[Any]: r"""Create a :class:`_expression.Select` from this :class:`_expression.Join`. E.g.:: stmt = table_a.join(table_b, table_a.c.id == table_b.c.a_id) stmt = stmt.select() The above will produce a SQL string resembling:: SELECT table_a.id, table_a.col, table_b.id, table_b.a_id FROM table_a JOIN table_b ON table_a.id = table_b.a_id """ return Select(self.left, self.right).select_from(self) @util.preload_module("sqlalchemy.sql.util") def _anonymous_fromclause( self, name: Optional[str] = None, flat: bool = False ) -> TODO_Any: sqlutil = util.preloaded.sql_util if flat: if isinstance(self.left, (FromGrouping, Join)): left_name = name # will recurse else: if name and isinstance(self.left, NamedFromClause): left_name = f"{name}_{self.left.name}" else: left_name = name if isinstance(self.right, (FromGrouping, Join)): right_name = name # will recurse else: if name and isinstance(self.right, NamedFromClause): right_name = f"{name}_{self.right.name}" else: right_name = name left_a, right_a = ( self.left._anonymous_fromclause(name=left_name, flat=flat), self.right._anonymous_fromclause(name=right_name, flat=flat), ) adapter = sqlutil.ClauseAdapter(left_a).chain( sqlutil.ClauseAdapter(right_a) ) return left_a.join( right_a, adapter.traverse(self.onclause), isouter=self.isouter, full=self.full, ) else: return ( self.select() .set_label_style(LABEL_STYLE_TABLENAME_PLUS_COL) .correlate(None) .alias(name) ) @util.ro_non_memoized_property def _hide_froms(self) -> Iterable[FromClause]: return itertools.chain( *[_from_objects(x.left, x.right) for x in self._cloned_set] ) @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: self_list: List[FromClause] = [self] return self_list + self.left._from_objects + self.right._from_objects class NoInit: def __init__(self, *arg: Any, **kw: Any): raise NotImplementedError( "The %s class is not intended to be constructed " "directly. Please use the %s() standalone " "function or the %s() method available from appropriate " "selectable objects." % ( self.__class__.__name__, self.__class__.__name__.lower(), self.__class__.__name__.lower(), ) ) class LateralFromClause(NamedFromClause): """mark a FROM clause as being able to render directly as LATERAL""" # FromClause -> # AliasedReturnsRows # -> Alias only for FromClause # -> Subquery only for SelectBase # -> CTE only for HasCTE -> SelectBase, DML # -> Lateral -> FromClause, but we accept SelectBase # w/ non-deprecated coercion # -> TableSample -> only for FromClause class AliasedReturnsRows(NoInit, NamedFromClause): """Base class of aliases against tables, subqueries, and other selectables.""" _is_from_container = True _supports_derived_columns = False element: ReturnsRows _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement), ("name", InternalTraversal.dp_anon_name), ] @classmethod def _construct( cls, selectable: Any, *, name: Optional[str] = None, **kw: Any, ) -> Self: obj = cls.__new__(cls) obj._init(selectable, name=name, **kw) return obj def _init(self, selectable: Any, *, name: Optional[str] = None) -> None: self.element = coercions.expect( roles.ReturnsRowsRole, selectable, apply_propagate_attrs=self ) self.element = selectable self._orig_name = name if name is None: if ( isinstance(selectable, FromClause) and selectable.named_with_column ): name = getattr(selectable, "name", None) if isinstance(name, _anonymous_label): name = None name = _anonymous_label.safe_construct(id(self), name or "anon") self.name = name def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: super()._refresh_for_new_column(column) self.element._refresh_for_new_column(column) def _populate_column_collection(self) -> None: self.element._generate_fromclause_column_proxies(self) @util.ro_non_memoized_property def description(self) -> str: name = self.name if isinstance(name, _anonymous_label): name = "anon_1" return name @util.ro_non_memoized_property def implicit_returning(self) -> bool: return self.element.implicit_returning # type: ignore @property def original(self) -> ReturnsRows: """Legacy for dialects that are referring to Alias.original.""" return self.element def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: if fromclause in self._cloned_set: return True return self.element.is_derived_from(fromclause) def _copy_internals( self, clone: _CloneCallableType = _clone, **kw: Any ) -> None: existing_element = self.element super()._copy_internals(clone=clone, **kw) # the element clone is usually against a Table that returns the # same object. don't reset exported .c. collections and other # memoized details if it was not changed. this saves a lot on # performance. if existing_element is not self.element: self._reset_column_collection() @property def _from_objects(self) -> List[FromClause]: return [self] class FromClauseAlias(AliasedReturnsRows): element: FromClause class Alias(roles.DMLTableRole, FromClauseAlias): """Represents an table or selectable alias (AS). Represents an alias, as typically applied to any table or sub-select within a SQL statement using the ``AS`` keyword (or without the keyword on certain databases such as Oracle). This object is constructed from the :func:`_expression.alias` module level function as well as the :meth:`_expression.FromClause.alias` method available on all :class:`_expression.FromClause` subclasses. .. seealso:: :meth:`_expression.FromClause.alias` """ __visit_name__ = "alias" inherit_cache = True element: FromClause @classmethod def _factory( cls, selectable: FromClause, name: Optional[str] = None, flat: bool = False, ) -> NamedFromClause: return coercions.expect( roles.FromClauseRole, selectable, allow_select=True ).alias(name=name, flat=flat) class TableValuedAlias(LateralFromClause, Alias): """An alias against a "table valued" SQL function. This construct provides for a SQL function that returns columns to be used in the FROM clause of a SELECT statement. The object is generated using the :meth:`_functions.FunctionElement.table_valued` method, e.g.: .. sourcecode:: pycon+sql >>> from sqlalchemy import select, func >>> fn = func.json_array_elements_text('["one", "two", "three"]').table_valued("value") >>> print(select(fn.c.value)) {printsql}SELECT anon_1.value FROM json_array_elements_text(:json_array_elements_text_1) AS anon_1 .. versionadded:: 1.4.0b2 .. seealso:: :ref:`tutorial_functions_table_valued` - in the :ref:`unified_tutorial` """ # noqa: E501 __visit_name__ = "table_valued_alias" _supports_derived_columns = True _render_derived = False _render_derived_w_types = False joins_implicitly = False _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement), ("name", InternalTraversal.dp_anon_name), ("_tableval_type", InternalTraversal.dp_type), ("_render_derived", InternalTraversal.dp_boolean), ("_render_derived_w_types", InternalTraversal.dp_boolean), ] def _init( self, selectable: Any, *, name: Optional[str] = None, table_value_type: Optional[TableValueType] = None, joins_implicitly: bool = False, ) -> None: super()._init(selectable, name=name) self.joins_implicitly = joins_implicitly self._tableval_type = ( type_api.TABLEVALUE if table_value_type is None else table_value_type ) @HasMemoized.memoized_attribute def column(self) -> TableValuedColumn[Any]: """Return a column expression representing this :class:`_sql.TableValuedAlias`. This accessor is used to implement the :meth:`_functions.FunctionElement.column_valued` method. See that method for further details. E.g.: .. sourcecode:: pycon+sql >>> print(select(func.some_func().table_valued("value").column)) {printsql}SELECT anon_1 FROM some_func() AS anon_1 .. seealso:: :meth:`_functions.FunctionElement.column_valued` """ return TableValuedColumn(self, self._tableval_type) def alias( self, name: Optional[str] = None, flat: bool = False ) -> TableValuedAlias: """Return a new alias of this :class:`_sql.TableValuedAlias`. This creates a distinct FROM object that will be distinguished from the original one when used in a SQL statement. """ tva: TableValuedAlias = TableValuedAlias._construct( self, name=name, table_value_type=self._tableval_type, joins_implicitly=self.joins_implicitly, ) if self._render_derived: tva._render_derived = True tva._render_derived_w_types = self._render_derived_w_types return tva def lateral(self, name: Optional[str] = None) -> LateralFromClause: """Return a new :class:`_sql.TableValuedAlias` with the lateral flag set, so that it renders as LATERAL. .. seealso:: :func:`_expression.lateral` """ tva = self.alias(name=name) tva._is_lateral = True return tva def render_derived( self, name: Optional[str] = None, with_types: bool = False, ) -> TableValuedAlias: """Apply "render derived" to this :class:`_sql.TableValuedAlias`. This has the effect of the individual column names listed out after the alias name in the "AS" sequence, e.g.: .. sourcecode:: pycon+sql >>> print( ... select( ... func.unnest(array(["one", "two", "three"])). table_valued("x", with_ordinality="o").render_derived() ... ) ... ) {printsql}SELECT anon_1.x, anon_1.o FROM unnest(ARRAY[%(param_1)s, %(param_2)s, %(param_3)s]) WITH ORDINALITY AS anon_1(x, o) The ``with_types`` keyword will render column types inline within the alias expression (this syntax currently applies to the PostgreSQL database): .. sourcecode:: pycon+sql >>> print( ... select( ... func.json_to_recordset( ... '[{"a":1,"b":"foo"},{"a":"2","c":"bar"}]' ... ) ... .table_valued(column("a", Integer), column("b", String)) ... .render_derived(with_types=True) ... ) ... ) {printsql}SELECT anon_1.a, anon_1.b FROM json_to_recordset(:json_to_recordset_1) AS anon_1(a INTEGER, b VARCHAR) :param name: optional string name that will be applied to the alias generated. If left as None, a unique anonymizing name will be used. :param with_types: if True, the derived columns will include the datatype specification with each column. This is a special syntax currently known to be required by PostgreSQL for some SQL functions. """ # noqa: E501 # note: don't use the @_generative system here, keep a reference # to the original object. otherwise you can have re-use of the # python id() of the original which can cause name conflicts if # a new anon-name grabs the same identifier as the local anon-name # (just saw it happen on CI) # construct against original to prevent memory growth # for repeated generations new_alias: TableValuedAlias = TableValuedAlias._construct( self.element, name=name, table_value_type=self._tableval_type, joins_implicitly=self.joins_implicitly, ) new_alias._render_derived = True new_alias._render_derived_w_types = with_types return new_alias class Lateral(FromClauseAlias, LateralFromClause): """Represent a LATERAL subquery. This object is constructed from the :func:`_expression.lateral` module level function as well as the :meth:`_expression.FromClause.lateral` method available on all :class:`_expression.FromClause` subclasses. While LATERAL is part of the SQL standard, currently only more recent PostgreSQL versions provide support for this keyword. .. seealso:: :ref:`tutorial_lateral_correlation` - overview of usage. """ __visit_name__ = "lateral" _is_lateral = True inherit_cache = True @classmethod def _factory( cls, selectable: Union[SelectBase, _FromClauseArgument], name: Optional[str] = None, ) -> LateralFromClause: return coercions.expect( roles.FromClauseRole, selectable, explicit_subquery=True ).lateral(name=name) class TableSample(FromClauseAlias): """Represent a TABLESAMPLE clause. This object is constructed from the :func:`_expression.tablesample` module level function as well as the :meth:`_expression.FromClause.tablesample` method available on all :class:`_expression.FromClause` subclasses. .. seealso:: :func:`_expression.tablesample` """ __visit_name__ = "tablesample" _traverse_internals: _TraverseInternalsType = ( AliasedReturnsRows._traverse_internals + [ ("sampling", InternalTraversal.dp_clauseelement), ("seed", InternalTraversal.dp_clauseelement), ] ) @classmethod def _factory( cls, selectable: _FromClauseArgument, sampling: Union[float, Function[Any]], name: Optional[str] = None, seed: Optional[roles.ExpressionElementRole[Any]] = None, ) -> TableSample: return coercions.expect(roles.FromClauseRole, selectable).tablesample( sampling, name=name, seed=seed ) @util.preload_module("sqlalchemy.sql.functions") def _init( # type: ignore[override] self, selectable: Any, *, name: Optional[str] = None, sampling: Union[float, Function[Any]], seed: Optional[roles.ExpressionElementRole[Any]] = None, ) -> None: assert sampling is not None functions = util.preloaded.sql_functions if not isinstance(sampling, functions.Function): sampling = functions.func.system(sampling) self.sampling: Function[Any] = sampling self.seed = seed super()._init(selectable, name=name) def _get_method(self) -> Function[Any]: return self.sampling class CTE( roles.DMLTableRole, roles.IsCTERole, Generative, HasPrefixes, HasSuffixes, AliasedReturnsRows, ): """Represent a Common Table Expression. The :class:`_expression.CTE` object is obtained using the :meth:`_sql.SelectBase.cte` method from any SELECT statement. A less often available syntax also allows use of the :meth:`_sql.HasCTE.cte` method present on :term:`DML` constructs such as :class:`_sql.Insert`, :class:`_sql.Update` and :class:`_sql.Delete`. See the :meth:`_sql.HasCTE.cte` method for usage details on CTEs. .. seealso:: :ref:`tutorial_subqueries_ctes` - in the 2.0 tutorial :meth:`_sql.HasCTE.cte` - examples of calling styles """ __visit_name__ = "cte" _traverse_internals: _TraverseInternalsType = ( AliasedReturnsRows._traverse_internals + [ ("_cte_alias", InternalTraversal.dp_clauseelement), ("_restates", InternalTraversal.dp_clauseelement), ("recursive", InternalTraversal.dp_boolean), ("nesting", InternalTraversal.dp_boolean), ] + HasPrefixes._has_prefixes_traverse_internals + HasSuffixes._has_suffixes_traverse_internals ) element: HasCTE @classmethod def _factory( cls, selectable: HasCTE, name: Optional[str] = None, recursive: bool = False, ) -> CTE: r"""Return a new :class:`_expression.CTE`, or Common Table Expression instance. Please see :meth:`_expression.HasCTE.cte` for detail on CTE usage. """ return coercions.expect(roles.HasCTERole, selectable).cte( name=name, recursive=recursive ) def _init( self, selectable: Select[Any], *, name: Optional[str] = None, recursive: bool = False, nesting: bool = False, _cte_alias: Optional[CTE] = None, _restates: Optional[CTE] = None, _prefixes: Optional[Tuple[()]] = None, _suffixes: Optional[Tuple[()]] = None, ) -> None: self.recursive = recursive self.nesting = nesting self._cte_alias = _cte_alias # Keep recursivity reference with union/union_all self._restates = _restates if _prefixes: self._prefixes = _prefixes if _suffixes: self._suffixes = _suffixes super()._init(selectable, name=name) def _populate_column_collection(self) -> None: if self._cte_alias is not None: self._cte_alias._generate_fromclause_column_proxies(self) else: self.element._generate_fromclause_column_proxies(self) def alias(self, name: Optional[str] = None, flat: bool = False) -> CTE: """Return an :class:`_expression.Alias` of this :class:`_expression.CTE`. This method is a CTE-specific specialization of the :meth:`_expression.FromClause.alias` method. .. seealso:: :ref:`tutorial_using_aliases` :func:`_expression.alias` """ return CTE._construct( self.element, name=name, recursive=self.recursive, nesting=self.nesting, _cte_alias=self, _prefixes=self._prefixes, _suffixes=self._suffixes, ) def union(self, *other: _SelectStatementForCompoundArgument) -> CTE: r"""Return a new :class:`_expression.CTE` with a SQL ``UNION`` of the original CTE against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. .. seealso:: :meth:`_sql.HasCTE.cte` - examples of calling styles """ assert is_select_statement( self.element ), f"CTE element f{self.element} does not support union()" return CTE._construct( self.element.union(*other), name=self.name, recursive=self.recursive, nesting=self.nesting, _restates=self, _prefixes=self._prefixes, _suffixes=self._suffixes, ) def union_all(self, *other: _SelectStatementForCompoundArgument) -> CTE: r"""Return a new :class:`_expression.CTE` with a SQL ``UNION ALL`` of the original CTE against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. .. seealso:: :meth:`_sql.HasCTE.cte` - examples of calling styles """ assert is_select_statement( self.element ), f"CTE element f{self.element} does not support union_all()" return CTE._construct( self.element.union_all(*other), name=self.name, recursive=self.recursive, nesting=self.nesting, _restates=self, _prefixes=self._prefixes, _suffixes=self._suffixes, ) def _get_reference_cte(self) -> CTE: """ A recursive CTE is updated to attach the recursive part. Updated CTEs should still refer to the original CTE. This function returns this reference identifier. """ return self._restates if self._restates is not None else self class _CTEOpts(NamedTuple): nesting: bool class _ColumnsPlusNames(NamedTuple): required_label_name: Optional[str] """ string label name, if non-None, must be rendered as a label, i.e. "AS <name>" """ proxy_key: Optional[str] """ proxy_key that is to be part of the result map for this col. this is also the key in a fromclause.c or select.selected_columns collection """ fallback_label_name: Optional[str] """ name that can be used to render an "AS <name>" when we have to render a label even though required_label_name was not given """ column: Union[ColumnElement[Any], TextClause] """ the ColumnElement itself """ repeated: bool """ True if this is a duplicate of a previous column in the list of columns """ class SelectsRows(ReturnsRows): """Sub-base of ReturnsRows for elements that deliver rows directly, namely SELECT and INSERT/UPDATE/DELETE..RETURNING""" _label_style: SelectLabelStyle = LABEL_STYLE_NONE def _generate_columns_plus_names( self, anon_for_dupe_key: bool, cols: Optional[_SelectIterable] = None, ) -> List[_ColumnsPlusNames]: """Generate column names as rendered in a SELECT statement by the compiler. This is distinct from the _column_naming_convention generator that's intended for population of .c collections and similar, which has different rules. the collection returned here calls upon the _column_naming_convention as well. """ if cols is None: cols = self._all_selected_columns key_naming_convention = SelectState._column_naming_convention( self._label_style ) names = {} result: List[_ColumnsPlusNames] = [] result_append = result.append table_qualified = self._label_style is LABEL_STYLE_TABLENAME_PLUS_COL label_style_none = self._label_style is LABEL_STYLE_NONE # a counter used for "dedupe" labels, which have double underscores # in them and are never referred by name; they only act # as positional placeholders. they need only be unique within # the single columns clause they're rendered within (required by # some dbs such as mysql). So their anon identity is tracked against # a fixed counter rather than hash() identity. dedupe_hash = 1 for c in cols: repeated = False if not c._render_label_in_columns_clause: effective_name = required_label_name = fallback_label_name = ( None ) elif label_style_none: if TYPE_CHECKING: assert is_column_element(c) effective_name = required_label_name = None fallback_label_name = c._non_anon_label or c._anon_name_label else: if TYPE_CHECKING: assert is_column_element(c) if table_qualified: required_label_name = effective_name = ( fallback_label_name ) = c._tq_label else: effective_name = fallback_label_name = c._non_anon_label required_label_name = None if effective_name is None: # it seems like this could be _proxy_key and we would # not need _expression_label but it isn't # giving us a clue when to use anon_label instead expr_label = c._expression_label if expr_label is None: repeated = c._anon_name_label in names names[c._anon_name_label] = c effective_name = required_label_name = None if repeated: # here, "required_label_name" is sent as # "None" and "fallback_label_name" is sent. if table_qualified: fallback_label_name = ( c._dedupe_anon_tq_label_idx(dedupe_hash) ) dedupe_hash += 1 else: fallback_label_name = c._dedupe_anon_label_idx( dedupe_hash ) dedupe_hash += 1 else: fallback_label_name = c._anon_name_label else: required_label_name = effective_name = ( fallback_label_name ) = expr_label if effective_name is not None: if TYPE_CHECKING: assert is_column_element(c) if effective_name in names: # when looking to see if names[name] is the same column as # c, use hash(), so that an annotated version of the column # is seen as the same as the non-annotated if hash(names[effective_name]) != hash(c): # different column under the same name. apply # disambiguating label if table_qualified: required_label_name = fallback_label_name = ( c._anon_tq_label ) else: required_label_name = fallback_label_name = ( c._anon_name_label ) if anon_for_dupe_key and required_label_name in names: # here, c._anon_tq_label is definitely unique to # that column identity (or annotated version), so # this should always be true. # this is also an infrequent codepath because # you need two levels of duplication to be here assert hash(names[required_label_name]) == hash(c) # the column under the disambiguating label is # already present. apply the "dedupe" label to # subsequent occurrences of the column so that the # original stays non-ambiguous if table_qualified: required_label_name = fallback_label_name = ( c._dedupe_anon_tq_label_idx(dedupe_hash) ) dedupe_hash += 1 else: required_label_name = fallback_label_name = ( c._dedupe_anon_label_idx(dedupe_hash) ) dedupe_hash += 1 repeated = True else: names[required_label_name] = c elif anon_for_dupe_key: # same column under the same name. apply the "dedupe" # label so that the original stays non-ambiguous if table_qualified: required_label_name = fallback_label_name = ( c._dedupe_anon_tq_label_idx(dedupe_hash) ) dedupe_hash += 1 else: required_label_name = fallback_label_name = ( c._dedupe_anon_label_idx(dedupe_hash) ) dedupe_hash += 1 repeated = True else: names[effective_name] = c result_append( _ColumnsPlusNames( required_label_name, key_naming_convention(c), fallback_label_name, c, repeated, ) ) return result class HasCTE(roles.HasCTERole, SelectsRows): """Mixin that declares a class to include CTE support.""" _has_ctes_traverse_internals: _TraverseInternalsType = [ ("_independent_ctes", InternalTraversal.dp_clauseelement_list), ("_independent_ctes_opts", InternalTraversal.dp_plain_obj), ] _independent_ctes: Tuple[CTE, ...] = () _independent_ctes_opts: Tuple[_CTEOpts, ...] = () @_generative def add_cte(self, *ctes: CTE, nest_here: bool = False) -> Self: r"""Add one or more :class:`_sql.CTE` constructs to this statement. This method will associate the given :class:`_sql.CTE` constructs with the parent statement such that they will each be unconditionally rendered in the WITH clause of the final statement, even if not referenced elsewhere within the statement or any sub-selects. The optional :paramref:`.HasCTE.add_cte.nest_here` parameter when set to True will have the effect that each given :class:`_sql.CTE` will render in a WITH clause rendered directly along with this statement, rather than being moved to the top of the ultimate rendered statement, even if this statement is rendered as a subquery within a larger statement. This method has two general uses. One is to embed CTE statements that serve some purpose without being referenced explicitly, such as the use case of embedding a DML statement such as an INSERT or UPDATE as a CTE inline with a primary statement that may draw from its results indirectly. The other is to provide control over the exact placement of a particular series of CTE constructs that should remain rendered directly in terms of a particular statement that may be nested in a larger statement. E.g.:: from sqlalchemy import table, column, select t = table('t', column('c1'), column('c2')) ins = t.insert().values({"c1": "x", "c2": "y"}).cte() stmt = select(t).add_cte(ins) Would render:: WITH anon_1 AS (INSERT INTO t (c1, c2) VALUES (:param_1, :param_2)) SELECT t.c1, t.c2 FROM t Above, the "anon_1" CTE is not referenced in the SELECT statement, however still accomplishes the task of running an INSERT statement. Similarly in a DML-related context, using the PostgreSQL :class:`_postgresql.Insert` construct to generate an "upsert":: from sqlalchemy import table, column from sqlalchemy.dialects.postgresql import insert t = table("t", column("c1"), column("c2")) delete_statement_cte = ( t.delete().where(t.c.c1 < 1).cte("deletions") ) insert_stmt = insert(t).values({"c1": 1, "c2": 2}) update_statement = insert_stmt.on_conflict_do_update( index_elements=[t.c.c1], set_={ "c1": insert_stmt.excluded.c1, "c2": insert_stmt.excluded.c2, }, ).add_cte(delete_statement_cte) print(update_statement) The above statement renders as:: WITH deletions AS (DELETE FROM t WHERE t.c1 < %(c1_1)s) INSERT INTO t (c1, c2) VALUES (%(c1)s, %(c2)s) ON CONFLICT (c1) DO UPDATE SET c1 = excluded.c1, c2 = excluded.c2 .. versionadded:: 1.4.21 :param \*ctes: zero or more :class:`.CTE` constructs. .. versionchanged:: 2.0 Multiple CTE instances are accepted :param nest_here: if True, the given CTE or CTEs will be rendered as though they specified the :paramref:`.HasCTE.cte.nesting` flag to ``True`` when they were added to this :class:`.HasCTE`. Assuming the given CTEs are not referenced in an outer-enclosing statement as well, the CTEs given should render at the level of this statement when this flag is given. .. versionadded:: 2.0 .. seealso:: :paramref:`.HasCTE.cte.nesting` """ opt = _CTEOpts( nest_here, ) for cte in ctes: cte = coercions.expect(roles.IsCTERole, cte) self._independent_ctes += (cte,) self._independent_ctes_opts += (opt,) return self def cte( self, name: Optional[str] = None, recursive: bool = False, nesting: bool = False, ) -> CTE: r"""Return a new :class:`_expression.CTE`, or Common Table Expression instance. Common table expressions are a SQL standard whereby SELECT statements can draw upon secondary statements specified along with the primary statement, using a clause called "WITH". Special semantics regarding UNION can also be employed to allow "recursive" queries, where a SELECT statement can draw upon the set of rows that have previously been selected. CTEs can also be applied to DML constructs UPDATE, INSERT and DELETE on some databases, both as a source of CTE rows when combined with RETURNING, as well as a consumer of CTE rows. SQLAlchemy detects :class:`_expression.CTE` objects, which are treated similarly to :class:`_expression.Alias` objects, as special elements to be delivered to the FROM clause of the statement as well as to a WITH clause at the top of the statement. For special prefixes such as PostgreSQL "MATERIALIZED" and "NOT MATERIALIZED", the :meth:`_expression.CTE.prefix_with` method may be used to establish these. .. versionchanged:: 1.3.13 Added support for prefixes. In particular - MATERIALIZED and NOT MATERIALIZED. :param name: name given to the common table expression. Like :meth:`_expression.FromClause.alias`, the name can be left as ``None`` in which case an anonymous symbol will be used at query compile time. :param recursive: if ``True``, will render ``WITH RECURSIVE``. A recursive common table expression is intended to be used in conjunction with UNION ALL in order to derive rows from those already selected. :param nesting: if ``True``, will render the CTE locally to the statement in which it is referenced. For more complex scenarios, the :meth:`.HasCTE.add_cte` method using the :paramref:`.HasCTE.add_cte.nest_here` parameter may also be used to more carefully control the exact placement of a particular CTE. .. versionadded:: 1.4.24 .. seealso:: :meth:`.HasCTE.add_cte` The following examples include two from PostgreSQL's documentation at https://www.postgresql.org/docs/current/static/queries-with.html, as well as additional examples. Example 1, non recursive:: from sqlalchemy import (Table, Column, String, Integer, MetaData, select, func) metadata = MetaData() orders = Table('orders', metadata, Column('region', String), Column('amount', Integer), Column('product', String), Column('quantity', Integer) ) regional_sales = select( orders.c.region, func.sum(orders.c.amount).label('total_sales') ).group_by(orders.c.region).cte("regional_sales") top_regions = select(regional_sales.c.region).\ where( regional_sales.c.total_sales > select( func.sum(regional_sales.c.total_sales) / 10 ) ).cte("top_regions") statement = select( orders.c.region, orders.c.product, func.sum(orders.c.quantity).label("product_units"), func.sum(orders.c.amount).label("product_sales") ).where(orders.c.region.in_( select(top_regions.c.region) )).group_by(orders.c.region, orders.c.product) result = conn.execute(statement).fetchall() Example 2, WITH RECURSIVE:: from sqlalchemy import (Table, Column, String, Integer, MetaData, select, func) metadata = MetaData() parts = Table('parts', metadata, Column('part', String), Column('sub_part', String), Column('quantity', Integer), ) included_parts = select(\ parts.c.sub_part, parts.c.part, parts.c.quantity\ ).\ where(parts.c.part=='our part').\ cte(recursive=True) incl_alias = included_parts.alias() parts_alias = parts.alias() included_parts = included_parts.union_all( select( parts_alias.c.sub_part, parts_alias.c.part, parts_alias.c.quantity ).\ where(parts_alias.c.part==incl_alias.c.sub_part) ) statement = select( included_parts.c.sub_part, func.sum(included_parts.c.quantity). label('total_quantity') ).\ group_by(included_parts.c.sub_part) result = conn.execute(statement).fetchall() Example 3, an upsert using UPDATE and INSERT with CTEs:: from datetime import date from sqlalchemy import (MetaData, Table, Column, Integer, Date, select, literal, and_, exists) metadata = MetaData() visitors = Table('visitors', metadata, Column('product_id', Integer, primary_key=True), Column('date', Date, primary_key=True), Column('count', Integer), ) # add 5 visitors for the product_id == 1 product_id = 1 day = date.today() count = 5 update_cte = ( visitors.update() .where(and_(visitors.c.product_id == product_id, visitors.c.date == day)) .values(count=visitors.c.count + count) .returning(literal(1)) .cte('update_cte') ) upsert = visitors.insert().from_select( [visitors.c.product_id, visitors.c.date, visitors.c.count], select(literal(product_id), literal(day), literal(count)) .where(~exists(update_cte.select())) ) connection.execute(upsert) Example 4, Nesting CTE (SQLAlchemy 1.4.24 and above):: value_a = select( literal("root").label("n") ).cte("value_a") # A nested CTE with the same name as the root one value_a_nested = select( literal("nesting").label("n") ).cte("value_a", nesting=True) # Nesting CTEs takes ascendency locally # over the CTEs at a higher level value_b = select(value_a_nested.c.n).cte("value_b") value_ab = select(value_a.c.n.label("a"), value_b.c.n.label("b")) The above query will render the second CTE nested inside the first, shown with inline parameters below as:: WITH value_a AS (SELECT 'root' AS n), value_b AS (WITH value_a AS (SELECT 'nesting' AS n) SELECT value_a.n AS n FROM value_a) SELECT value_a.n AS a, value_b.n AS b FROM value_a, value_b The same CTE can be set up using the :meth:`.HasCTE.add_cte` method as follows (SQLAlchemy 2.0 and above):: value_a = select( literal("root").label("n") ).cte("value_a") # A nested CTE with the same name as the root one value_a_nested = select( literal("nesting").label("n") ).cte("value_a") # Nesting CTEs takes ascendency locally # over the CTEs at a higher level value_b = ( select(value_a_nested.c.n). add_cte(value_a_nested, nest_here=True). cte("value_b") ) value_ab = select(value_a.c.n.label("a"), value_b.c.n.label("b")) Example 5, Non-Linear CTE (SQLAlchemy 1.4.28 and above):: edge = Table( "edge", metadata, Column("id", Integer, primary_key=True), Column("left", Integer), Column("right", Integer), ) root_node = select(literal(1).label("node")).cte( "nodes", recursive=True ) left_edge = select(edge.c.left).join( root_node, edge.c.right == root_node.c.node ) right_edge = select(edge.c.right).join( root_node, edge.c.left == root_node.c.node ) subgraph_cte = root_node.union(left_edge, right_edge) subgraph = select(subgraph_cte) The above query will render 2 UNIONs inside the recursive CTE:: WITH RECURSIVE nodes(node) AS ( SELECT 1 AS node UNION SELECT edge."left" AS "left" FROM edge JOIN nodes ON edge."right" = nodes.node UNION SELECT edge."right" AS "right" FROM edge JOIN nodes ON edge."left" = nodes.node ) SELECT nodes.node FROM nodes .. seealso:: :meth:`_orm.Query.cte` - ORM version of :meth:`_expression.HasCTE.cte`. """ return CTE._construct( self, name=name, recursive=recursive, nesting=nesting ) class Subquery(AliasedReturnsRows): """Represent a subquery of a SELECT. A :class:`.Subquery` is created by invoking the :meth:`_expression.SelectBase.subquery` method, or for convenience the :meth:`_expression.SelectBase.alias` method, on any :class:`_expression.SelectBase` subclass which includes :class:`_expression.Select`, :class:`_expression.CompoundSelect`, and :class:`_expression.TextualSelect`. As rendered in a FROM clause, it represents the body of the SELECT statement inside of parenthesis, followed by the usual "AS <somename>" that defines all "alias" objects. The :class:`.Subquery` object is very similar to the :class:`_expression.Alias` object and can be used in an equivalent way. The difference between :class:`_expression.Alias` and :class:`.Subquery` is that :class:`_expression.Alias` always contains a :class:`_expression.FromClause` object whereas :class:`.Subquery` always contains a :class:`_expression.SelectBase` object. .. versionadded:: 1.4 The :class:`.Subquery` class was added which now serves the purpose of providing an aliased version of a SELECT statement. """ __visit_name__ = "subquery" _is_subquery = True inherit_cache = True element: SelectBase @classmethod def _factory( cls, selectable: SelectBase, name: Optional[str] = None ) -> Subquery: """Return a :class:`.Subquery` object.""" return coercions.expect( roles.SelectStatementRole, selectable ).subquery(name=name) @util.deprecated( "1.4", "The :meth:`.Subquery.as_scalar` method, which was previously " "``Alias.as_scalar()`` prior to version 1.4, is deprecated and " "will be removed in a future release; Please use the " ":meth:`_expression.Select.scalar_subquery` method of the " ":func:`_expression.select` " "construct before constructing a subquery object, or with the ORM " "use the :meth:`_query.Query.scalar_subquery` method.", ) def as_scalar(self) -> ScalarSelect[Any]: return self.element.set_label_style(LABEL_STYLE_NONE).scalar_subquery() class FromGrouping(GroupedElement, FromClause): """Represent a grouping of a FROM clause""" _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement) ] element: FromClause def __init__(self, element: FromClause): self.element = coercions.expect(roles.FromClauseRole, element) def _init_collections(self) -> None: pass @util.ro_non_memoized_property def columns( self, ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: return self.element.columns @util.ro_non_memoized_property def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: return self.element.columns @property def primary_key(self) -> Iterable[NamedColumn[Any]]: return self.element.primary_key @property def foreign_keys(self) -> Iterable[ForeignKey]: return self.element.foreign_keys def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: return self.element.is_derived_from(fromclause) def alias( self, name: Optional[str] = None, flat: bool = False ) -> NamedFromGrouping: return NamedFromGrouping(self.element.alias(name=name, flat=flat)) def _anonymous_fromclause(self, **kw: Any) -> FromGrouping: return FromGrouping(self.element._anonymous_fromclause(**kw)) @util.ro_non_memoized_property def _hide_froms(self) -> Iterable[FromClause]: return self.element._hide_froms @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return self.element._from_objects def __getstate__(self) -> Dict[str, FromClause]: return {"element": self.element} def __setstate__(self, state: Dict[str, FromClause]) -> None: self.element = state["element"] if TYPE_CHECKING: def self_group( self, against: Optional[OperatorType] = None ) -> Self: ... class NamedFromGrouping(FromGrouping, NamedFromClause): """represent a grouping of a named FROM clause .. versionadded:: 2.0 """ inherit_cache = True if TYPE_CHECKING: def self_group( self, against: Optional[OperatorType] = None ) -> Self: ... class TableClause(roles.DMLTableRole, Immutable, NamedFromClause): """Represents a minimal "table" construct. This is a lightweight table object that has only a name, a collection of columns, which are typically produced by the :func:`_expression.column` function, and a schema:: from sqlalchemy import table, column user = table("user", column("id"), column("name"), column("description"), ) The :class:`_expression.TableClause` construct serves as the base for the more commonly used :class:`_schema.Table` object, providing the usual set of :class:`_expression.FromClause` services including the ``.c.`` collection and statement generation methods. It does **not** provide all the additional schema-level services of :class:`_schema.Table`, including constraints, references to other tables, or support for :class:`_schema.MetaData`-level services. It's useful on its own as an ad-hoc construct used to generate quick SQL statements when a more fully fledged :class:`_schema.Table` is not on hand. """ __visit_name__ = "table" _traverse_internals: _TraverseInternalsType = [ ( "columns", InternalTraversal.dp_fromclause_canonical_column_collection, ), ("name", InternalTraversal.dp_string), ("schema", InternalTraversal.dp_string), ] _is_table = True fullname: str implicit_returning = False """:class:`_expression.TableClause` doesn't support having a primary key or column -level defaults, so implicit returning doesn't apply.""" @util.ro_memoized_property def _autoincrement_column(self) -> Optional[ColumnClause[Any]]: """No PK or default support so no autoincrement column.""" return None def __init__(self, name: str, *columns: ColumnClause[Any], **kw: Any): super().__init__() self.name = name self._columns = DedupeColumnCollection() self.primary_key = ColumnSet() # type: ignore self.foreign_keys = set() # type: ignore for c in columns: self.append_column(c) schema = kw.pop("schema", None) if schema is not None: self.schema = schema if self.schema is not None: self.fullname = "%s.%s" % (self.schema, self.name) else: self.fullname = self.name if kw: raise exc.ArgumentError("Unsupported argument(s): %s" % list(kw)) if TYPE_CHECKING: @util.ro_non_memoized_property def columns( self, ) -> ReadOnlyColumnCollection[str, ColumnClause[Any]]: ... @util.ro_non_memoized_property def c(self) -> ReadOnlyColumnCollection[str, ColumnClause[Any]]: ... def __str__(self) -> str: if self.schema is not None: return self.schema + "." + self.name else: return self.name def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: pass def _init_collections(self) -> None: pass @util.ro_memoized_property def description(self) -> str: return self.name def append_column(self, c: ColumnClause[Any]) -> None: existing = c.table if existing is not None and existing is not self: raise exc.ArgumentError( "column object '%s' already assigned to table '%s'" % (c.key, existing) ) self._columns.add(c) c.table = self @util.preload_module("sqlalchemy.sql.dml") def insert(self) -> util.preloaded.sql_dml.Insert: """Generate an :class:`_sql.Insert` construct against this :class:`_expression.TableClause`. E.g.:: table.insert().values(name='foo') See :func:`_expression.insert` for argument and usage information. """ return util.preloaded.sql_dml.Insert(self) @util.preload_module("sqlalchemy.sql.dml") def update(self) -> Update: """Generate an :func:`_expression.update` construct against this :class:`_expression.TableClause`. E.g.:: table.update().where(table.c.id==7).values(name='foo') See :func:`_expression.update` for argument and usage information. """ return util.preloaded.sql_dml.Update( self, ) @util.preload_module("sqlalchemy.sql.dml") def delete(self) -> Delete: """Generate a :func:`_expression.delete` construct against this :class:`_expression.TableClause`. E.g.:: table.delete().where(table.c.id==7) See :func:`_expression.delete` for argument and usage information. """ return util.preloaded.sql_dml.Delete(self) @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return [self] ForUpdateParameter = Union["ForUpdateArg", None, bool, Dict[str, Any]] class ForUpdateArg(ClauseElement): _traverse_internals: _TraverseInternalsType = [ ("of", InternalTraversal.dp_clauseelement_list), ("nowait", InternalTraversal.dp_boolean), ("read", InternalTraversal.dp_boolean), ("skip_locked", InternalTraversal.dp_boolean), ("key_share", InternalTraversal.dp_boolean), ] of: Optional[Sequence[ClauseElement]] nowait: bool read: bool skip_locked: bool @classmethod def _from_argument( cls, with_for_update: ForUpdateParameter ) -> Optional[ForUpdateArg]: if isinstance(with_for_update, ForUpdateArg): return with_for_update elif with_for_update in (None, False): return None elif with_for_update is True: return ForUpdateArg() else: return ForUpdateArg(**cast("Dict[str, Any]", with_for_update)) def __eq__(self, other: Any) -> bool: return ( isinstance(other, ForUpdateArg) and other.nowait == self.nowait and other.read == self.read and other.skip_locked == self.skip_locked and other.key_share == self.key_share and other.of is self.of ) def __ne__(self, other: Any) -> bool: return not self.__eq__(other) def __hash__(self) -> int: return id(self) def __init__( self, *, nowait: bool = False, read: bool = False, of: Optional[_ForUpdateOfArgument] = None, skip_locked: bool = False, key_share: bool = False, ): """Represents arguments specified to :meth:`_expression.Select.for_update`. """ self.nowait = nowait self.read = read self.skip_locked = skip_locked self.key_share = key_share if of is not None: self.of = [ coercions.expect(roles.ColumnsClauseRole, elem) for elem in util.to_list(of) ] else: self.of = None class Values(roles.InElementRole, Generative, LateralFromClause): """Represent a ``VALUES`` construct that can be used as a FROM element in a statement. The :class:`_expression.Values` object is created from the :func:`_expression.values` function. .. versionadded:: 1.4 """ __visit_name__ = "values" _data: Tuple[Sequence[Tuple[Any, ...]], ...] = () _unnamed: bool _traverse_internals: _TraverseInternalsType = [ ("_column_args", InternalTraversal.dp_clauseelement_list), ("_data", InternalTraversal.dp_dml_multi_values), ("name", InternalTraversal.dp_string), ("literal_binds", InternalTraversal.dp_boolean), ] def __init__( self, *columns: ColumnClause[Any], name: Optional[str] = None, literal_binds: bool = False, ): super().__init__() self._column_args = columns if name is None: self._unnamed = True self.name = _anonymous_label.safe_construct(id(self), "anon") else: self._unnamed = False self.name = name self.literal_binds = literal_binds self.named_with_column = not self._unnamed @property def _column_types(self) -> List[TypeEngine[Any]]: return [col.type for col in self._column_args] @_generative def alias(self, name: Optional[str] = None, flat: bool = False) -> Self: """Return a new :class:`_expression.Values` construct that is a copy of this one with the given name. This method is a VALUES-specific specialization of the :meth:`_expression.FromClause.alias` method. .. seealso:: :ref:`tutorial_using_aliases` :func:`_expression.alias` """ non_none_name: str if name is None: non_none_name = _anonymous_label.safe_construct(id(self), "anon") else: non_none_name = name self.name = non_none_name self.named_with_column = True self._unnamed = False return self @_generative def lateral(self, name: Optional[str] = None) -> LateralFromClause: """Return a new :class:`_expression.Values` with the lateral flag set, so that it renders as LATERAL. .. seealso:: :func:`_expression.lateral` """ non_none_name: str if name is None: non_none_name = self.name else: non_none_name = name self._is_lateral = True self.name = non_none_name self._unnamed = False return self @_generative def data(self, values: Sequence[Tuple[Any, ...]]) -> Self: """Return a new :class:`_expression.Values` construct, adding the given data to the data list. E.g.:: my_values = my_values.data([(1, 'value 1'), (2, 'value2')]) :param values: a sequence (i.e. list) of tuples that map to the column expressions given in the :class:`_expression.Values` constructor. """ self._data += (values,) return self def scalar_values(self) -> ScalarValues: """Returns a scalar ``VALUES`` construct that can be used as a COLUMN element in a statement. .. versionadded:: 2.0.0b4 """ return ScalarValues(self._column_args, self._data, self.literal_binds) def _populate_column_collection(self) -> None: for c in self._column_args: if c.table is not None and c.table is not self: _, c = c._make_proxy(self) else: # if the column was used in other contexts, ensure # no memoizations of other FROM clauses. # see test_values.py -> test_auto_proxy_select_direct_col c._reset_memoizations() self._columns.add(c) c.table = self @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return [self] class ScalarValues(roles.InElementRole, GroupedElement, ColumnElement[Any]): """Represent a scalar ``VALUES`` construct that can be used as a COLUMN element in a statement. The :class:`_expression.ScalarValues` object is created from the :meth:`_expression.Values.scalar_values` method. It's also automatically generated when a :class:`_expression.Values` is used in an ``IN`` or ``NOT IN`` condition. .. versionadded:: 2.0.0b4 """ __visit_name__ = "scalar_values" _traverse_internals: _TraverseInternalsType = [ ("_column_args", InternalTraversal.dp_clauseelement_list), ("_data", InternalTraversal.dp_dml_multi_values), ("literal_binds", InternalTraversal.dp_boolean), ] def __init__( self, columns: Sequence[ColumnClause[Any]], data: Tuple[Sequence[Tuple[Any, ...]], ...], literal_binds: bool, ): super().__init__() self._column_args = columns self._data = data self.literal_binds = literal_binds @property def _column_types(self) -> List[TypeEngine[Any]]: return [col.type for col in self._column_args] def __clause_element__(self) -> ScalarValues: return self if TYPE_CHECKING: def self_group( self, against: Optional[OperatorType] = None ) -> Self: ... class SelectBase( roles.SelectStatementRole, roles.DMLSelectRole, roles.CompoundElementRole, roles.InElementRole, HasCTE, SupportsCloneAnnotations, Selectable, ): """Base class for SELECT statements. This includes :class:`_expression.Select`, :class:`_expression.CompoundSelect` and :class:`_expression.TextualSelect`. """ _is_select_base = True is_select = True _label_style: SelectLabelStyle = LABEL_STYLE_NONE def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: self._reset_memoizations() @util.ro_non_memoized_property def selected_columns( self, ) -> ColumnCollection[str, ColumnElement[Any]]: """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. .. note:: The :attr:`_sql.SelectBase.selected_columns` collection does not include expressions established in the columns clause using the :func:`_sql.text` construct; these are silently omitted from the collection. To use plain textual column expressions inside of a :class:`_sql.Select` construct, use the :func:`_sql.literal_column` construct. .. seealso:: :attr:`_sql.Select.selected_columns` .. versionadded:: 1.4 """ raise NotImplementedError() def _generate_fromclause_column_proxies( self, subquery: FromClause, *, proxy_compound_columns: Optional[ Iterable[Sequence[ColumnElement[Any]]] ] = None, ) -> None: raise NotImplementedError() @util.ro_non_memoized_property def _all_selected_columns(self) -> _SelectIterable: """A sequence of expressions that correspond to what is rendered in the columns clause, including :class:`_sql.TextClause` constructs. .. versionadded:: 1.4.12 .. seealso:: :attr:`_sql.SelectBase.exported_columns` """ raise NotImplementedError() @property def exported_columns( self, ) -> ReadOnlyColumnCollection[str, ColumnElement[Any]]: """A :class:`_expression.ColumnCollection` that represents the "exported" columns of this :class:`_expression.Selectable`, not including :class:`_sql.TextClause` constructs. The "exported" columns for a :class:`_expression.SelectBase` object are synonymous with the :attr:`_expression.SelectBase.selected_columns` collection. .. versionadded:: 1.4 .. seealso:: :attr:`_expression.Select.exported_columns` :attr:`_expression.Selectable.exported_columns` :attr:`_expression.FromClause.exported_columns` """ return self.selected_columns.as_readonly() @property @util.deprecated( "1.4", "The :attr:`_expression.SelectBase.c` and " ":attr:`_expression.SelectBase.columns` attributes " "are deprecated and will be removed in a future release; these " "attributes implicitly create a subquery that should be explicit. " "Please call :meth:`_expression.SelectBase.subquery` " "first in order to create " "a subquery, which then contains this attribute. To access the " "columns that this SELECT object SELECTs " "from, use the :attr:`_expression.SelectBase.selected_columns` " "attribute.", ) def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: return self._implicit_subquery.columns @property def columns( self, ) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: return self.c def get_label_style(self) -> SelectLabelStyle: """ Retrieve the current label style. Implemented by subclasses. """ raise NotImplementedError() def set_label_style(self, style: SelectLabelStyle) -> Self: """Return a new selectable with the specified label style. Implemented by subclasses. """ raise NotImplementedError() @util.deprecated( "1.4", "The :meth:`_expression.SelectBase.select` method is deprecated " "and will be removed in a future release; this method implicitly " "creates a subquery that should be explicit. " "Please call :meth:`_expression.SelectBase.subquery` " "first in order to create " "a subquery, which then can be selected.", ) def select(self, *arg: Any, **kw: Any) -> Select[Any]: return self._implicit_subquery.select(*arg, **kw) @HasMemoized.memoized_attribute def _implicit_subquery(self) -> Subquery: return self.subquery() def _scalar_type(self) -> TypeEngine[Any]: raise NotImplementedError() @util.deprecated( "1.4", "The :meth:`_expression.SelectBase.as_scalar` " "method is deprecated and will be " "removed in a future release. Please refer to " ":meth:`_expression.SelectBase.scalar_subquery`.", ) def as_scalar(self) -> ScalarSelect[Any]: return self.scalar_subquery() def exists(self) -> Exists: """Return an :class:`_sql.Exists` representation of this selectable, which can be used as a column expression. The returned object is an instance of :class:`_sql.Exists`. .. seealso:: :func:`_sql.exists` :ref:`tutorial_exists` - in the :term:`2.0 style` tutorial. .. versionadded:: 1.4 """ return Exists(self) def scalar_subquery(self) -> ScalarSelect[Any]: """Return a 'scalar' representation of this selectable, which can be used as a column expression. The returned object is an instance of :class:`_sql.ScalarSelect`. Typically, a select statement which has only one column in its columns clause is eligible to be used as a scalar expression. The scalar subquery can then be used in the WHERE clause or columns clause of an enclosing SELECT. Note that the scalar subquery differentiates from the FROM-level subquery that can be produced using the :meth:`_expression.SelectBase.subquery` method. .. versionchanged: 1.4 - the ``.as_scalar()`` method was renamed to :meth:`_expression.SelectBase.scalar_subquery`. .. seealso:: :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial """ if self._label_style is not LABEL_STYLE_NONE: self = self.set_label_style(LABEL_STYLE_NONE) return ScalarSelect(self) def label(self, name: Optional[str]) -> Label[Any]: """Return a 'scalar' representation of this selectable, embedded as a subquery with a label. .. seealso:: :meth:`_expression.SelectBase.scalar_subquery`. """ return self.scalar_subquery().label(name) def lateral(self, name: Optional[str] = None) -> LateralFromClause: """Return a LATERAL alias of this :class:`_expression.Selectable`. The return value is the :class:`_expression.Lateral` construct also provided by the top-level :func:`_expression.lateral` function. .. seealso:: :ref:`tutorial_lateral_correlation` - overview of usage. """ return Lateral._factory(self, name) def subquery(self, name: Optional[str] = None) -> Subquery: """Return a subquery of this :class:`_expression.SelectBase`. A subquery is from a SQL perspective a parenthesized, named construct that can be placed in the FROM clause of another SELECT statement. Given a SELECT statement such as:: stmt = select(table.c.id, table.c.name) The above statement might look like:: SELECT table.id, table.name FROM table The subquery form by itself renders the same way, however when embedded into the FROM clause of another SELECT statement, it becomes a named sub-element:: subq = stmt.subquery() new_stmt = select(subq) The above renders as:: SELECT anon_1.id, anon_1.name FROM (SELECT table.id, table.name FROM table) AS anon_1 Historically, :meth:`_expression.SelectBase.subquery` is equivalent to calling the :meth:`_expression.FromClause.alias` method on a FROM object; however, as a :class:`_expression.SelectBase` object is not directly FROM object, the :meth:`_expression.SelectBase.subquery` method provides clearer semantics. .. versionadded:: 1.4 """ return Subquery._construct( self._ensure_disambiguated_names(), name=name ) def _ensure_disambiguated_names(self) -> Self: """Ensure that the names generated by this selectbase will be disambiguated in some way, if possible. """ raise NotImplementedError() def alias( self, name: Optional[str] = None, flat: bool = False ) -> Subquery: """Return a named subquery against this :class:`_expression.SelectBase`. For a :class:`_expression.SelectBase` (as opposed to a :class:`_expression.FromClause`), this returns a :class:`.Subquery` object which behaves mostly the same as the :class:`_expression.Alias` object that is used with a :class:`_expression.FromClause`. .. versionchanged:: 1.4 The :meth:`_expression.SelectBase.alias` method is now a synonym for the :meth:`_expression.SelectBase.subquery` method. """ return self.subquery(name=name) _SB = TypeVar("_SB", bound=SelectBase) class SelectStatementGrouping(GroupedElement, SelectBase, Generic[_SB]): """Represent a grouping of a :class:`_expression.SelectBase`. This differs from :class:`.Subquery` in that we are still an "inner" SELECT statement, this is strictly for grouping inside of compound selects. """ __visit_name__ = "select_statement_grouping" _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement) ] + SupportsCloneAnnotations._clone_annotations_traverse_internals _is_select_container = True element: _SB def __init__(self, element: _SB) -> None: self.element = cast( _SB, coercions.expect(roles.SelectStatementRole, element) ) def _ensure_disambiguated_names(self) -> SelectStatementGrouping[_SB]: new_element = self.element._ensure_disambiguated_names() if new_element is not self.element: return SelectStatementGrouping(new_element) else: return self def get_label_style(self) -> SelectLabelStyle: return self.element.get_label_style() def set_label_style( self, label_style: SelectLabelStyle ) -> SelectStatementGrouping[_SB]: return SelectStatementGrouping( self.element.set_label_style(label_style) ) @property def select_statement(self) -> _SB: return self.element def self_group(self, against: Optional[OperatorType] = None) -> Self: return self if TYPE_CHECKING: def _ungroup(self) -> _SB: ... # def _generate_columns_plus_names( # self, anon_for_dupe_key: bool # ) -> List[Tuple[str, str, str, ColumnElement[Any], bool]]: # return self.element._generate_columns_plus_names(anon_for_dupe_key) def _generate_fromclause_column_proxies( self, subquery: FromClause, *, proxy_compound_columns: Optional[ Iterable[Sequence[ColumnElement[Any]]] ] = None, ) -> None: self.element._generate_fromclause_column_proxies( subquery, proxy_compound_columns=proxy_compound_columns ) @util.ro_non_memoized_property def _all_selected_columns(self) -> _SelectIterable: return self.element._all_selected_columns @util.ro_non_memoized_property def selected_columns(self) -> ColumnCollection[str, ColumnElement[Any]]: """A :class:`_expression.ColumnCollection` representing the columns that the embedded SELECT statement returns in its result set, not including :class:`_sql.TextClause` constructs. .. versionadded:: 1.4 .. seealso:: :attr:`_sql.Select.selected_columns` """ return self.element.selected_columns @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return self.element._from_objects def add_cte(self, *ctes: CTE, nest_here: bool = False) -> Self: # SelectStatementGrouping not generative: has no attribute '_generate' raise NotImplementedError class GenerativeSelect(SelectBase, Generative): """Base class for SELECT statements where additional elements can be added. This serves as the base for :class:`_expression.Select` and :class:`_expression.CompoundSelect` where elements such as ORDER BY, GROUP BY can be added and column rendering can be controlled. Compare to :class:`_expression.TextualSelect`, which, while it subclasses :class:`_expression.SelectBase` and is also a SELECT construct, represents a fixed textual string which cannot be altered at this level, only wrapped as a subquery. """ _order_by_clauses: Tuple[ColumnElement[Any], ...] = () _group_by_clauses: Tuple[ColumnElement[Any], ...] = () _limit_clause: Optional[ColumnElement[Any]] = None _offset_clause: Optional[ColumnElement[Any]] = None _fetch_clause: Optional[ColumnElement[Any]] = None _fetch_clause_options: Optional[Dict[str, bool]] = None _for_update_arg: Optional[ForUpdateArg] = None def __init__(self, _label_style: SelectLabelStyle = LABEL_STYLE_DEFAULT): self._label_style = _label_style @_generative def with_for_update( self, *, nowait: bool = False, read: bool = False, of: Optional[_ForUpdateOfArgument] = None, skip_locked: bool = False, key_share: bool = False, ) -> Self: """Specify a ``FOR UPDATE`` clause for this :class:`_expression.GenerativeSelect`. E.g.:: stmt = select(table).with_for_update(nowait=True) On a database like PostgreSQL or Oracle, the above would render a statement like:: SELECT table.a, table.b FROM table FOR UPDATE NOWAIT on other backends, the ``nowait`` option is ignored and instead would produce:: SELECT table.a, table.b FROM table FOR UPDATE When called with no arguments, the statement will render with the suffix ``FOR UPDATE``. Additional arguments can then be provided which allow for common database-specific variants. :param nowait: boolean; will render ``FOR UPDATE NOWAIT`` on Oracle and PostgreSQL dialects. :param read: boolean; will render ``LOCK IN SHARE MODE`` on MySQL, ``FOR SHARE`` on PostgreSQL. On PostgreSQL, when combined with ``nowait``, will render ``FOR SHARE NOWAIT``. :param of: SQL expression or list of SQL expression elements, (typically :class:`_schema.Column` objects or a compatible expression, for some backends may also be a table expression) which will render into a ``FOR UPDATE OF`` clause; supported by PostgreSQL, Oracle, some MySQL versions and possibly others. May render as a table or as a column depending on backend. :param skip_locked: boolean, will render ``FOR UPDATE SKIP LOCKED`` on Oracle and PostgreSQL dialects or ``FOR SHARE SKIP LOCKED`` if ``read=True`` is also specified. :param key_share: boolean, will render ``FOR NO KEY UPDATE``, or if combined with ``read=True`` will render ``FOR KEY SHARE``, on the PostgreSQL dialect. """ self._for_update_arg = ForUpdateArg( nowait=nowait, read=read, of=of, skip_locked=skip_locked, key_share=key_share, ) return self def get_label_style(self) -> SelectLabelStyle: """ Retrieve the current label style. .. versionadded:: 1.4 """ return self._label_style def set_label_style(self, style: SelectLabelStyle) -> Self: """Return a new selectable with the specified label style. There are three "label styles" available, :attr:`_sql.SelectLabelStyle.LABEL_STYLE_DISAMBIGUATE_ONLY`, :attr:`_sql.SelectLabelStyle.LABEL_STYLE_TABLENAME_PLUS_COL`, and :attr:`_sql.SelectLabelStyle.LABEL_STYLE_NONE`. The default style is :attr:`_sql.SelectLabelStyle.LABEL_STYLE_DISAMBIGUATE_ONLY`. In modern SQLAlchemy, there is not generally a need to change the labeling style, as per-expression labels are more effectively used by making use of the :meth:`_sql.ColumnElement.label` method. In past versions, :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` was used to disambiguate same-named columns from different tables, aliases, or subqueries; the newer :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` now applies labels only to names that conflict with an existing name so that the impact of this labeling is minimal. The rationale for disambiguation is mostly so that all column expressions are available from a given :attr:`_sql.FromClause.c` collection when a subquery is created. .. versionadded:: 1.4 - the :meth:`_sql.GenerativeSelect.set_label_style` method replaces the previous combination of ``.apply_labels()``, ``.with_labels()`` and ``use_labels=True`` methods and/or parameters. .. seealso:: :data:`_sql.LABEL_STYLE_DISAMBIGUATE_ONLY` :data:`_sql.LABEL_STYLE_TABLENAME_PLUS_COL` :data:`_sql.LABEL_STYLE_NONE` :data:`_sql.LABEL_STYLE_DEFAULT` """ if self._label_style is not style: self = self._generate() self._label_style = style return self @property def _group_by_clause(self) -> ClauseList: """ClauseList access to group_by_clauses for legacy dialects""" return ClauseList._construct_raw( operators.comma_op, self._group_by_clauses ) @property def _order_by_clause(self) -> ClauseList: """ClauseList access to order_by_clauses for legacy dialects""" return ClauseList._construct_raw( operators.comma_op, self._order_by_clauses ) def _offset_or_limit_clause( self, element: _LimitOffsetType, name: Optional[str] = None, type_: Optional[_TypeEngineArgument[int]] = None, ) -> ColumnElement[Any]: """Convert the given value to an "offset or limit" clause. This handles incoming integers and converts to an expression; if an expression is already given, it is passed through. """ return coercions.expect( roles.LimitOffsetRole, element, name=name, type_=type_ ) @overload def _offset_or_limit_clause_asint( self, clause: ColumnElement[Any], attrname: str ) -> NoReturn: ... @overload def _offset_or_limit_clause_asint( self, clause: Optional[_OffsetLimitParam], attrname: str ) -> Optional[int]: ... def _offset_or_limit_clause_asint( self, clause: Optional[ColumnElement[Any]], attrname: str ) -> Union[NoReturn, Optional[int]]: """Convert the "offset or limit" clause of a select construct to an integer. This is only possible if the value is stored as a simple bound parameter. Otherwise, a compilation error is raised. """ if clause is None: return None try: value = clause._limit_offset_value except AttributeError as err: raise exc.CompileError( "This SELECT structure does not use a simple " "integer value for %s" % attrname ) from err else: return util.asint(value) @property def _limit(self) -> Optional[int]: """Get an integer value for the limit. This should only be used by code that cannot support a limit as a BindParameter or other custom clause as it will throw an exception if the limit isn't currently set to an integer. """ return self._offset_or_limit_clause_asint(self._limit_clause, "limit") def _simple_int_clause(self, clause: ClauseElement) -> bool: """True if the clause is a simple integer, False if it is not present or is a SQL expression. """ return isinstance(clause, _OffsetLimitParam) @property def _offset(self) -> Optional[int]: """Get an integer value for the offset. This should only be used by code that cannot support an offset as a BindParameter or other custom clause as it will throw an exception if the offset isn't currently set to an integer. """ return self._offset_or_limit_clause_asint( self._offset_clause, "offset" ) @property def _has_row_limiting_clause(self) -> bool: return ( self._limit_clause is not None or self._offset_clause is not None or self._fetch_clause is not None ) @_generative def limit(self, limit: _LimitOffsetType) -> Self: """Return a new selectable with the given LIMIT criterion applied. This is a numerical value which usually renders as a ``LIMIT`` expression in the resulting select. Backends that don't support ``LIMIT`` will attempt to provide similar functionality. .. note:: The :meth:`_sql.GenerativeSelect.limit` method will replace any clause applied with :meth:`_sql.GenerativeSelect.fetch`. :param limit: an integer LIMIT parameter, or a SQL expression that provides an integer result. Pass ``None`` to reset it. .. seealso:: :meth:`_sql.GenerativeSelect.fetch` :meth:`_sql.GenerativeSelect.offset` """ self._fetch_clause = self._fetch_clause_options = None self._limit_clause = self._offset_or_limit_clause(limit) return self @_generative def fetch( self, count: _LimitOffsetType, with_ties: bool = False, percent: bool = False, ) -> Self: """Return a new selectable with the given FETCH FIRST criterion applied. This is a numeric value which usually renders as ``FETCH {FIRST | NEXT} [ count ] {ROW | ROWS} {ONLY | WITH TIES}`` expression in the resulting select. This functionality is is currently implemented for Oracle, PostgreSQL, MSSQL. Use :meth:`_sql.GenerativeSelect.offset` to specify the offset. .. note:: The :meth:`_sql.GenerativeSelect.fetch` method will replace any clause applied with :meth:`_sql.GenerativeSelect.limit`. .. versionadded:: 1.4 :param count: an integer COUNT parameter, or a SQL expression that provides an integer result. When ``percent=True`` this will represent the percentage of rows to return, not the absolute value. Pass ``None`` to reset it. :param with_ties: When ``True``, the WITH TIES option is used to return any additional rows that tie for the last place in the result set according to the ``ORDER BY`` clause. The ``ORDER BY`` may be mandatory in this case. Defaults to ``False`` :param percent: When ``True``, ``count`` represents the percentage of the total number of selected rows to return. Defaults to ``False`` .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.offset` """ self._limit_clause = None if count is None: self._fetch_clause = self._fetch_clause_options = None else: self._fetch_clause = self._offset_or_limit_clause(count) self._fetch_clause_options = { "with_ties": with_ties, "percent": percent, } return self @_generative def offset(self, offset: _LimitOffsetType) -> Self: """Return a new selectable with the given OFFSET criterion applied. This is a numeric value which usually renders as an ``OFFSET`` expression in the resulting select. Backends that don't support ``OFFSET`` will attempt to provide similar functionality. :param offset: an integer OFFSET parameter, or a SQL expression that provides an integer result. Pass ``None`` to reset it. .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.fetch` """ self._offset_clause = self._offset_or_limit_clause(offset) return self @_generative @util.preload_module("sqlalchemy.sql.util") def slice( self, start: int, stop: int, ) -> Self: """Apply LIMIT / OFFSET to this statement based on a slice. The start and stop indices behave like the argument to Python's built-in :func:`range` function. This method provides an alternative to using ``LIMIT``/``OFFSET`` to get a slice of the query. For example, :: stmt = select(User).order_by(User).id.slice(1, 3) renders as .. sourcecode:: sql SELECT users.id AS users_id, users.name AS users_name FROM users ORDER BY users.id LIMIT ? OFFSET ? (2, 1) .. note:: The :meth:`_sql.GenerativeSelect.slice` method will replace any clause applied with :meth:`_sql.GenerativeSelect.fetch`. .. versionadded:: 1.4 Added the :meth:`_sql.GenerativeSelect.slice` method generalized from the ORM. .. seealso:: :meth:`_sql.GenerativeSelect.limit` :meth:`_sql.GenerativeSelect.offset` :meth:`_sql.GenerativeSelect.fetch` """ sql_util = util.preloaded.sql_util self._fetch_clause = self._fetch_clause_options = None self._limit_clause, self._offset_clause = sql_util._make_slice( self._limit_clause, self._offset_clause, start, stop ) return self @_generative def order_by( self, __first: Union[ Literal[None, _NoArg.NO_ARG], _ColumnExpressionOrStrLabelArgument[Any], ] = _NoArg.NO_ARG, *clauses: _ColumnExpressionOrStrLabelArgument[Any], ) -> Self: r"""Return a new selectable with the given list of ORDER BY criteria applied. e.g.:: stmt = select(table).order_by(table.c.id, table.c.name) Calling this method multiple times is equivalent to calling it once with all the clauses concatenated. All existing ORDER BY criteria may be cancelled by passing ``None`` by itself. New ORDER BY criteria may then be added by invoking :meth:`_orm.Query.order_by` again, e.g.:: # will erase all ORDER BY and ORDER BY new_col alone stmt = stmt.order_by(None).order_by(new_col) :param \*clauses: a series of :class:`_expression.ColumnElement` constructs which will be used to generate an ORDER BY clause. .. seealso:: :ref:`tutorial_order_by` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if not clauses and __first is None: self._order_by_clauses = () elif __first is not _NoArg.NO_ARG: self._order_by_clauses += tuple( coercions.expect( roles.OrderByRole, clause, apply_propagate_attrs=self ) for clause in (__first,) + clauses ) return self @_generative def group_by( self, __first: Union[ Literal[None, _NoArg.NO_ARG], _ColumnExpressionOrStrLabelArgument[Any], ] = _NoArg.NO_ARG, *clauses: _ColumnExpressionOrStrLabelArgument[Any], ) -> Self: r"""Return a new selectable with the given list of GROUP BY criterion applied. All existing GROUP BY settings can be suppressed by passing ``None``. e.g.:: stmt = select(table.c.name, func.max(table.c.stat)).\ group_by(table.c.name) :param \*clauses: a series of :class:`_expression.ColumnElement` constructs which will be used to generate an GROUP BY clause. .. seealso:: :ref:`tutorial_group_by_w_aggregates` - in the :ref:`unified_tutorial` :ref:`tutorial_order_by_label` - in the :ref:`unified_tutorial` """ if not clauses and __first is None: self._group_by_clauses = () elif __first is not _NoArg.NO_ARG: self._group_by_clauses += tuple( coercions.expect( roles.GroupByRole, clause, apply_propagate_attrs=self ) for clause in (__first,) + clauses ) return self @CompileState.plugin_for("default", "compound_select") class CompoundSelectState(CompileState): @util.memoized_property def _label_resolve_dict( self, ) -> Tuple[ Dict[str, ColumnElement[Any]], Dict[str, ColumnElement[Any]], Dict[str, ColumnElement[Any]], ]: # TODO: this is hacky and slow hacky_subquery = self.statement.subquery() hacky_subquery.named_with_column = False d = {c.key: c for c in hacky_subquery.c} return d, d, d class _CompoundSelectKeyword(Enum): UNION = "UNION" UNION_ALL = "UNION ALL" EXCEPT = "EXCEPT" EXCEPT_ALL = "EXCEPT ALL" INTERSECT = "INTERSECT" INTERSECT_ALL = "INTERSECT ALL" class CompoundSelect(HasCompileState, GenerativeSelect, ExecutableReturnsRows): """Forms the basis of ``UNION``, ``UNION ALL``, and other SELECT-based set operations. .. seealso:: :func:`_expression.union` :func:`_expression.union_all` :func:`_expression.intersect` :func:`_expression.intersect_all` :func:`_expression.except` :func:`_expression.except_all` """ __visit_name__ = "compound_select" _traverse_internals: _TraverseInternalsType = ( [ ("selects", InternalTraversal.dp_clauseelement_list), ("_limit_clause", InternalTraversal.dp_clauseelement), ("_offset_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause_options", InternalTraversal.dp_plain_dict), ("_order_by_clauses", InternalTraversal.dp_clauseelement_list), ("_group_by_clauses", InternalTraversal.dp_clauseelement_list), ("_for_update_arg", InternalTraversal.dp_clauseelement), ("keyword", InternalTraversal.dp_string), ] + SupportsCloneAnnotations._clone_annotations_traverse_internals + HasCTE._has_ctes_traverse_internals ) selects: List[SelectBase] _is_from_container = True _auto_correlate = False def __init__( self, keyword: _CompoundSelectKeyword, *selects: _SelectStatementForCompoundArgument, ): self.keyword = keyword self.selects = [ coercions.expect( roles.CompoundElementRole, s, apply_propagate_attrs=self ).self_group(against=self) for s in selects ] GenerativeSelect.__init__(self) @classmethod def _create_union( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.UNION, *selects) @classmethod def _create_union_all( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.UNION_ALL, *selects) @classmethod def _create_except( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.EXCEPT, *selects) @classmethod def _create_except_all( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.EXCEPT_ALL, *selects) @classmethod def _create_intersect( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.INTERSECT, *selects) @classmethod def _create_intersect_all( cls, *selects: _SelectStatementForCompoundArgument ) -> CompoundSelect: return CompoundSelect(_CompoundSelectKeyword.INTERSECT_ALL, *selects) def _scalar_type(self) -> TypeEngine[Any]: return self.selects[0]._scalar_type() def self_group( self, against: Optional[OperatorType] = None ) -> GroupedElement: return SelectStatementGrouping(self) def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: for s in self.selects: if s.is_derived_from(fromclause): return True return False def set_label_style(self, style: SelectLabelStyle) -> CompoundSelect: if self._label_style is not style: self = self._generate() select_0 = self.selects[0].set_label_style(style) self.selects = [select_0] + self.selects[1:] return self def _ensure_disambiguated_names(self) -> CompoundSelect: new_select = self.selects[0]._ensure_disambiguated_names() if new_select is not self.selects[0]: self = self._generate() self.selects = [new_select] + self.selects[1:] return self def _generate_fromclause_column_proxies( self, subquery: FromClause, *, proxy_compound_columns: Optional[ Iterable[Sequence[ColumnElement[Any]]] ] = None, ) -> None: # this is a slightly hacky thing - the union exports a # column that resembles just that of the *first* selectable. # to get at a "composite" column, particularly foreign keys, # you have to dig through the proxies collection which we # generate below. select_0 = self.selects[0] if self._label_style is not LABEL_STYLE_DEFAULT: select_0 = select_0.set_label_style(self._label_style) # hand-construct the "_proxies" collection to include all # derived columns place a 'weight' annotation corresponding # to how low in the list of select()s the column occurs, so # that the corresponding_column() operation can resolve # conflicts extra_col_iterator = zip( *[ [ c._annotate(dd) for c in stmt._all_selected_columns if is_column_element(c) ] for dd, stmt in [ ({"weight": i + 1}, stmt) for i, stmt in enumerate(self.selects) ] ] ) # the incoming proxy_compound_columns can be present also if this is # a compound embedded in a compound. it's probably more appropriate # that we generate new weights local to this nested compound, though # i haven't tried to think what it means for compound nested in # compound select_0._generate_fromclause_column_proxies( subquery, proxy_compound_columns=extra_col_iterator ) def _refresh_for_new_column(self, column: ColumnElement[Any]) -> None: super()._refresh_for_new_column(column) for select in self.selects: select._refresh_for_new_column(column) @util.ro_non_memoized_property def _all_selected_columns(self) -> _SelectIterable: return self.selects[0]._all_selected_columns @util.ro_non_memoized_property def selected_columns( self, ) -> ColumnCollection[str, ColumnElement[Any]]: """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. For a :class:`_expression.CompoundSelect`, the :attr:`_expression.CompoundSelect.selected_columns` attribute returns the selected columns of the first SELECT statement contained within the series of statements within the set operation. .. seealso:: :attr:`_sql.Select.selected_columns` .. versionadded:: 1.4 """ return self.selects[0].selected_columns # backwards compat for elem in _CompoundSelectKeyword: setattr(CompoundSelect, elem.name, elem) @CompileState.plugin_for("default", "select") class SelectState(util.MemoizedSlots, CompileState): __slots__ = ( "from_clauses", "froms", "columns_plus_names", "_label_resolve_dict", ) if TYPE_CHECKING: default_select_compile_options: CacheableOptions else: class default_select_compile_options(CacheableOptions): _cache_key_traversal = [] if TYPE_CHECKING: @classmethod def get_plugin_class( cls, statement: Executable ) -> Type[SelectState]: ... def __init__( self, statement: Select[Any], compiler: Optional[SQLCompiler], **kw: Any, ): self.statement = statement self.from_clauses = statement._from_obj for memoized_entities in statement._memoized_select_entities: self._setup_joins( memoized_entities._setup_joins, memoized_entities._raw_columns ) if statement._setup_joins: self._setup_joins(statement._setup_joins, statement._raw_columns) self.froms = self._get_froms(statement) self.columns_plus_names = statement._generate_columns_plus_names(True) @classmethod def _plugin_not_implemented(cls) -> NoReturn: raise NotImplementedError( "The default SELECT construct without plugins does not " "implement this method." ) @classmethod def get_column_descriptions( cls, statement: Select[Any] ) -> List[Dict[str, Any]]: return [ { "name": name, "type": element.type, "expr": element, } for _, name, _, element, _ in ( statement._generate_columns_plus_names(False) ) ] @classmethod def from_statement( cls, statement: Select[Any], from_statement: roles.ReturnsRowsRole ) -> ExecutableReturnsRows: cls._plugin_not_implemented() @classmethod def get_columns_clause_froms( cls, statement: Select[Any] ) -> List[FromClause]: return cls._normalize_froms( itertools.chain.from_iterable( element._from_objects for element in statement._raw_columns ) ) @classmethod def _column_naming_convention( cls, label_style: SelectLabelStyle ) -> _LabelConventionCallable: table_qualified = label_style is LABEL_STYLE_TABLENAME_PLUS_COL dedupe = label_style is not LABEL_STYLE_NONE pa = prefix_anon_map() names = set() def go( c: Union[ColumnElement[Any], TextClause], col_name: Optional[str] = None, ) -> Optional[str]: if is_text_clause(c): return None elif TYPE_CHECKING: assert is_column_element(c) if not dedupe: name = c._proxy_key if name is None: name = "_no_label" return name name = c._tq_key_label if table_qualified else c._proxy_key if name is None: name = "_no_label" if name in names: return c._anon_label(name) % pa else: names.add(name) return name elif name in names: return ( c._anon_tq_key_label % pa if table_qualified else c._anon_key_label % pa ) else: names.add(name) return name return go def _get_froms(self, statement: Select[Any]) -> List[FromClause]: ambiguous_table_name_map: _AmbiguousTableNameMap self._ambiguous_table_name_map = ambiguous_table_name_map = {} return self._normalize_froms( itertools.chain( self.from_clauses, itertools.chain.from_iterable( [ element._from_objects for element in statement._raw_columns ] ), itertools.chain.from_iterable( [ element._from_objects for element in statement._where_criteria ] ), ), check_statement=statement, ambiguous_table_name_map=ambiguous_table_name_map, ) @classmethod def _normalize_froms( cls, iterable_of_froms: Iterable[FromClause], check_statement: Optional[Select[Any]] = None, ambiguous_table_name_map: Optional[_AmbiguousTableNameMap] = None, ) -> List[FromClause]: """given an iterable of things to select FROM, reduce them to what would actually render in the FROM clause of a SELECT. This does the job of checking for JOINs, tables, etc. that are in fact overlapping due to cloning, adaption, present in overlapping joins, etc. """ seen: Set[FromClause] = set() froms: List[FromClause] = [] for item in iterable_of_froms: if is_subquery(item) and item.element is check_statement: raise exc.InvalidRequestError( "select() construct refers to itself as a FROM" ) if not seen.intersection(item._cloned_set): froms.append(item) seen.update(item._cloned_set) if froms: toremove = set( itertools.chain.from_iterable( [_expand_cloned(f._hide_froms) for f in froms] ) ) if toremove: # filter out to FROM clauses not in the list, # using a list to maintain ordering froms = [f for f in froms if f not in toremove] if ambiguous_table_name_map is not None: ambiguous_table_name_map.update( ( fr.name, _anonymous_label.safe_construct( hash(fr.name), fr.name ), ) for item in froms for fr in item._from_objects if is_table(fr) and fr.schema and fr.name not in ambiguous_table_name_map ) return froms def _get_display_froms( self, explicit_correlate_froms: Optional[Sequence[FromClause]] = None, implicit_correlate_froms: Optional[Sequence[FromClause]] = None, ) -> List[FromClause]: """Return the full list of 'from' clauses to be displayed. Takes into account a set of existing froms which may be rendered in the FROM clause of enclosing selects; this Select may want to leave those absent if it is automatically correlating. """ froms = self.froms if self.statement._correlate: to_correlate = self.statement._correlate if to_correlate: froms = [ f for f in froms if f not in _cloned_intersection( _cloned_intersection( froms, explicit_correlate_froms or () ), to_correlate, ) ] if self.statement._correlate_except is not None: froms = [ f for f in froms if f not in _cloned_difference( _cloned_intersection( froms, explicit_correlate_froms or () ), self.statement._correlate_except, ) ] if ( self.statement._auto_correlate and implicit_correlate_froms and len(froms) > 1 ): froms = [ f for f in froms if f not in _cloned_intersection(froms, implicit_correlate_froms) ] if not len(froms): raise exc.InvalidRequestError( "Select statement '%r" "' returned no FROM clauses " "due to auto-correlation; " "specify correlate(<tables>) " "to control correlation " "manually." % self.statement ) return froms def _memoized_attr__label_resolve_dict( self, ) -> Tuple[ Dict[str, ColumnElement[Any]], Dict[str, ColumnElement[Any]], Dict[str, ColumnElement[Any]], ]: with_cols: Dict[str, ColumnElement[Any]] = { c._tq_label or c.key: c for c in self.statement._all_selected_columns if c._allow_label_resolve } only_froms: Dict[str, ColumnElement[Any]] = { c.key: c # type: ignore for c in _select_iterables(self.froms) if c._allow_label_resolve } only_cols: Dict[str, ColumnElement[Any]] = with_cols.copy() for key, value in only_froms.items(): with_cols.setdefault(key, value) return with_cols, only_froms, only_cols @classmethod def determine_last_joined_entity( cls, stmt: Select[Any] ) -> Optional[_JoinTargetElement]: if stmt._setup_joins: return stmt._setup_joins[-1][0] else: return None @classmethod def all_selected_columns(cls, statement: Select[Any]) -> _SelectIterable: return [c for c in _select_iterables(statement._raw_columns)] def _setup_joins( self, args: Tuple[_SetupJoinsElement, ...], raw_columns: List[_ColumnsClauseElement], ) -> None: for right, onclause, left, flags in args: if TYPE_CHECKING: if onclause is not None: assert isinstance(onclause, ColumnElement) isouter = flags["isouter"] full = flags["full"] if left is None: ( left, replace_from_obj_index, ) = self._join_determine_implicit_left_side( raw_columns, left, right, onclause ) else: (replace_from_obj_index) = self._join_place_explicit_left_side( left ) # these assertions can be made here, as if the right/onclause # contained ORM elements, the select() statement would have been # upgraded to an ORM select, and this method would not be called; # orm.context.ORMSelectCompileState._join() would be # used instead. if TYPE_CHECKING: assert isinstance(right, FromClause) if onclause is not None: assert isinstance(onclause, ColumnElement) if replace_from_obj_index is not None: # splice into an existing element in the # self._from_obj list left_clause = self.from_clauses[replace_from_obj_index] self.from_clauses = ( self.from_clauses[:replace_from_obj_index] + ( Join( left_clause, right, onclause, isouter=isouter, full=full, ), ) + self.from_clauses[replace_from_obj_index + 1 :] ) else: assert left is not None self.from_clauses = self.from_clauses + ( Join(left, right, onclause, isouter=isouter, full=full), ) @util.preload_module("sqlalchemy.sql.util") def _join_determine_implicit_left_side( self, raw_columns: List[_ColumnsClauseElement], left: Optional[FromClause], right: _JoinTargetElement, onclause: Optional[ColumnElement[Any]], ) -> Tuple[Optional[FromClause], Optional[int]]: """When join conditions don't express the left side explicitly, determine if an existing FROM or entity in this query can serve as the left hand side. """ sql_util = util.preloaded.sql_util replace_from_obj_index: Optional[int] = None from_clauses = self.from_clauses if from_clauses: indexes: List[int] = sql_util.find_left_clause_to_join_from( from_clauses, right, onclause ) if len(indexes) == 1: replace_from_obj_index = indexes[0] left = from_clauses[replace_from_obj_index] else: potential = {} statement = self.statement for from_clause in itertools.chain( itertools.chain.from_iterable( [element._from_objects for element in raw_columns] ), itertools.chain.from_iterable( [ element._from_objects for element in statement._where_criteria ] ), ): potential[from_clause] = () all_clauses = list(potential.keys()) indexes = sql_util.find_left_clause_to_join_from( all_clauses, right, onclause ) if len(indexes) == 1: left = all_clauses[indexes[0]] if len(indexes) > 1: raise exc.InvalidRequestError( "Can't determine which FROM clause to join " "from, there are multiple FROMS which can " "join to this entity. Please use the .select_from() " "method to establish an explicit left side, as well as " "providing an explicit ON clause if not present already to " "help resolve the ambiguity." ) elif not indexes: raise exc.InvalidRequestError( "Don't know how to join to %r. " "Please use the .select_from() " "method to establish an explicit left side, as well as " "providing an explicit ON clause if not present already to " "help resolve the ambiguity." % (right,) ) return left, replace_from_obj_index @util.preload_module("sqlalchemy.sql.util") def _join_place_explicit_left_side( self, left: FromClause ) -> Optional[int]: replace_from_obj_index: Optional[int] = None sql_util = util.preloaded.sql_util from_clauses = list(self.statement._iterate_from_elements()) if from_clauses: indexes: List[int] = sql_util.find_left_clause_that_matches_given( self.from_clauses, left ) else: indexes = [] if len(indexes) > 1: raise exc.InvalidRequestError( "Can't identify which entity in which to assign the " "left side of this join. Please use a more specific " "ON clause." ) # have an index, means the left side is already present in # an existing FROM in the self._from_obj tuple if indexes: replace_from_obj_index = indexes[0] # no index, means we need to add a new element to the # self._from_obj tuple return replace_from_obj_index class _SelectFromElements: __slots__ = () _raw_columns: List[_ColumnsClauseElement] _where_criteria: Tuple[ColumnElement[Any], ...] _from_obj: Tuple[FromClause, ...] def _iterate_from_elements(self) -> Iterator[FromClause]: # note this does not include elements # in _setup_joins seen = set() for element in self._raw_columns: for fr in element._from_objects: if fr in seen: continue seen.add(fr) yield fr for element in self._where_criteria: for fr in element._from_objects: if fr in seen: continue seen.add(fr) yield fr for element in self._from_obj: if element in seen: continue seen.add(element) yield element class _MemoizedSelectEntities( cache_key.HasCacheKey, traversals.HasCopyInternals, visitors.Traversible ): """represents partial state from a Select object, for the case where Select.columns() has redefined the set of columns/entities the statement will be SELECTing from. This object represents the entities from the SELECT before that transformation was applied, so that transformations that were made in terms of the SELECT at that time, such as join() as well as options(), can access the correct context. In previous SQLAlchemy versions, this wasn't needed because these constructs calculated everything up front, like when you called join() or options(), it did everything to figure out how that would translate into specific SQL constructs that would be ready to send directly to the SQL compiler when needed. But as of 1.4, all of that stuff is done in the compilation phase, during the "compile state" portion of the process, so that the work can all be cached. So it needs to be able to resolve joins/options2 based on what the list of entities was when those methods were called. """ __visit_name__ = "memoized_select_entities" _traverse_internals: _TraverseInternalsType = [ ("_raw_columns", InternalTraversal.dp_clauseelement_list), ("_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_with_options", InternalTraversal.dp_executable_options), ] _is_clone_of: Optional[ClauseElement] _raw_columns: List[_ColumnsClauseElement] _setup_joins: Tuple[_SetupJoinsElement, ...] _with_options: Tuple[ExecutableOption, ...] _annotations = util.EMPTY_DICT def _clone(self, **kw: Any) -> Self: c = self.__class__.__new__(self.__class__) c.__dict__ = {k: v for k, v in self.__dict__.items()} c._is_clone_of = self.__dict__.get("_is_clone_of", self) return c @classmethod def _generate_for_statement(cls, select_stmt: Select[Any]) -> None: if select_stmt._setup_joins or select_stmt._with_options: self = _MemoizedSelectEntities() self._raw_columns = select_stmt._raw_columns self._setup_joins = select_stmt._setup_joins self._with_options = select_stmt._with_options select_stmt._memoized_select_entities += (self,) select_stmt._raw_columns = [] select_stmt._setup_joins = select_stmt._with_options = () class Select( HasPrefixes, HasSuffixes, HasHints, HasCompileState, _SelectFromElements, GenerativeSelect, TypedReturnsRows[_TP], ): """Represents a ``SELECT`` statement. The :class:`_sql.Select` object is normally constructed using the :func:`_sql.select` function. See that function for details. .. seealso:: :func:`_sql.select` :ref:`tutorial_selecting_data` - in the 2.0 tutorial """ __visit_name__ = "select" _setup_joins: Tuple[_SetupJoinsElement, ...] = () _memoized_select_entities: Tuple[TODO_Any, ...] = () _raw_columns: List[_ColumnsClauseElement] _distinct: bool = False _distinct_on: Tuple[ColumnElement[Any], ...] = () _correlate: Tuple[FromClause, ...] = () _correlate_except: Optional[Tuple[FromClause, ...]] = None _where_criteria: Tuple[ColumnElement[Any], ...] = () _having_criteria: Tuple[ColumnElement[Any], ...] = () _from_obj: Tuple[FromClause, ...] = () _auto_correlate = True _is_select_statement = True _compile_options: CacheableOptions = ( SelectState.default_select_compile_options ) _traverse_internals: _TraverseInternalsType = ( [ ("_raw_columns", InternalTraversal.dp_clauseelement_list), ( "_memoized_select_entities", InternalTraversal.dp_memoized_select_entities, ), ("_from_obj", InternalTraversal.dp_clauseelement_list), ("_where_criteria", InternalTraversal.dp_clauseelement_tuple), ("_having_criteria", InternalTraversal.dp_clauseelement_tuple), ("_order_by_clauses", InternalTraversal.dp_clauseelement_tuple), ("_group_by_clauses", InternalTraversal.dp_clauseelement_tuple), ("_setup_joins", InternalTraversal.dp_setup_join_tuple), ("_correlate", InternalTraversal.dp_clauseelement_tuple), ("_correlate_except", InternalTraversal.dp_clauseelement_tuple), ("_limit_clause", InternalTraversal.dp_clauseelement), ("_offset_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause", InternalTraversal.dp_clauseelement), ("_fetch_clause_options", InternalTraversal.dp_plain_dict), ("_for_update_arg", InternalTraversal.dp_clauseelement), ("_distinct", InternalTraversal.dp_boolean), ("_distinct_on", InternalTraversal.dp_clauseelement_tuple), ("_label_style", InternalTraversal.dp_plain_obj), ] + HasCTE._has_ctes_traverse_internals + HasPrefixes._has_prefixes_traverse_internals + HasSuffixes._has_suffixes_traverse_internals + HasHints._has_hints_traverse_internals + SupportsCloneAnnotations._clone_annotations_traverse_internals + Executable._executable_traverse_internals ) _cache_key_traversal: _CacheKeyTraversalType = _traverse_internals + [ ("_compile_options", InternalTraversal.dp_has_cache_key) ] _compile_state_factory: Type[SelectState] @classmethod def _create_raw_select(cls, **kw: Any) -> Select[Any]: """Create a :class:`.Select` using raw ``__new__`` with no coercions. Used internally to build up :class:`.Select` constructs with pre-established state. """ stmt = Select.__new__(Select) stmt.__dict__.update(kw) return stmt def __init__(self, *entities: _ColumnsClauseArgument[Any]): r"""Construct a new :class:`_expression.Select`. The public constructor for :class:`_expression.Select` is the :func:`_sql.select` function. """ self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self ) for ent in entities ] GenerativeSelect.__init__(self) def _scalar_type(self) -> TypeEngine[Any]: if not self._raw_columns: return NULLTYPE elem = self._raw_columns[0] cols = list(elem._select_iterable) return cols[0].type def filter(self, *criteria: _ColumnExpressionArgument[bool]) -> Self: """A synonym for the :meth:`_sql.Select.where` method.""" return self.where(*criteria) def _filter_by_zero( self, ) -> Union[ FromClause, _JoinTargetProtocol, ColumnElement[Any], TextClause ]: if self._setup_joins: meth = SelectState.get_plugin_class( self ).determine_last_joined_entity _last_joined_entity = meth(self) if _last_joined_entity is not None: return _last_joined_entity if self._from_obj: return self._from_obj[0] return self._raw_columns[0] if TYPE_CHECKING: @overload def scalar_subquery( self: Select[Tuple[_MAYBE_ENTITY]], ) -> ScalarSelect[Any]: ... @overload def scalar_subquery( self: Select[Tuple[_NOT_ENTITY]], ) -> ScalarSelect[_NOT_ENTITY]: ... @overload def scalar_subquery(self) -> ScalarSelect[Any]: ... def scalar_subquery(self) -> ScalarSelect[Any]: ... def filter_by(self, **kwargs: Any) -> Self: r"""apply the given filtering criterion as a WHERE clause to this select. """ from_entity = self._filter_by_zero() clauses = [ _entity_namespace_key(from_entity, key) == value for key, value in kwargs.items() ] return self.filter(*clauses) @property def column_descriptions(self) -> Any: """Return a :term:`plugin-enabled` 'column descriptions' structure referring to the columns which are SELECTed by this statement. This attribute is generally useful when using the ORM, as an extended structure which includes information about mapped entities is returned. The section :ref:`queryguide_inspection` contains more background. For a Core-only statement, the structure returned by this accessor is derived from the same objects that are returned by the :attr:`.Select.selected_columns` accessor, formatted as a list of dictionaries which contain the keys ``name``, ``type`` and ``expr``, which indicate the column expressions to be selected:: >>> stmt = select(user_table) >>> stmt.column_descriptions [ { 'name': 'id', 'type': Integer(), 'expr': Column('id', Integer(), ...)}, { 'name': 'name', 'type': String(length=30), 'expr': Column('name', String(length=30), ...)} ] .. versionchanged:: 1.4.33 The :attr:`.Select.column_descriptions` attribute returns a structure for a Core-only set of entities, not just ORM-only entities. .. seealso:: :attr:`.UpdateBase.entity_description` - entity information for an :func:`.insert`, :func:`.update`, or :func:`.delete` :ref:`queryguide_inspection` - ORM background """ meth = SelectState.get_plugin_class(self).get_column_descriptions return meth(self) def from_statement( self, statement: roles.ReturnsRowsRole ) -> ExecutableReturnsRows: """Apply the columns which this :class:`.Select` would select onto another statement. This operation is :term:`plugin-specific` and will raise a not supported exception if this :class:`_sql.Select` does not select from plugin-enabled entities. The statement is typically either a :func:`_expression.text` or :func:`_expression.select` construct, and should return the set of columns appropriate to the entities represented by this :class:`.Select`. .. seealso:: :ref:`orm_queryguide_selecting_text` - usage examples in the ORM Querying Guide """ meth = SelectState.get_plugin_class(self).from_statement return meth(self, statement) @_generative def join( self, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, isouter: bool = False, full: bool = False, ) -> Self: r"""Create a SQL JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. E.g.:: stmt = select(user_table).join(address_table, user_table.c.id == address_table.c.user_id) The above statement generates SQL similar to:: SELECT user.id, user.name FROM user JOIN address ON user.id = address.user_id .. versionchanged:: 1.4 :meth:`_expression.Select.join` now creates a :class:`_sql.Join` object between a :class:`_sql.FromClause` source that is within the FROM clause of the existing SELECT, and a given target :class:`_sql.FromClause`, and then adds this :class:`_sql.Join` to the FROM clause of the newly generated SELECT statement. This is completely reworked from the behavior in 1.3, which would instead create a subquery of the entire :class:`_expression.Select` and then join that subquery to the target. This is a **backwards incompatible change** as the previous behavior was mostly useless, producing an unnamed subquery rejected by most databases in any case. The new behavior is modeled after that of the very successful :meth:`_orm.Query.join` method in the ORM, in order to support the functionality of :class:`_orm.Query` being available by using a :class:`_sql.Select` object with an :class:`_orm.Session`. See the notes for this change at :ref:`change_select_join`. :param target: target table to join towards :param onclause: ON clause of the join. If omitted, an ON clause is generated automatically based on the :class:`_schema.ForeignKey` linkages between the two tables, if one can be unambiguously determined, otherwise an error is raised. :param isouter: if True, generate LEFT OUTER join. Same as :meth:`_expression.Select.outerjoin`. :param full: if True, generate FULL OUTER join. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join_from` :meth:`_expression.Select.outerjoin` """ # noqa: E501 join_target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) if onclause is not None: onclause_element = coercions.expect(roles.OnClauseRole, onclause) else: onclause_element = None self._setup_joins += ( ( join_target, onclause_element, None, {"isouter": isouter, "full": full}, ), ) return self def outerjoin_from( self, from_: _FromClauseArgument, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, full: bool = False, ) -> Self: r"""Create a SQL LEFT OUTER JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. Usage is the same as that of :meth:`_selectable.Select.join_from`. """ return self.join_from( from_, target, onclause=onclause, isouter=True, full=full ) @_generative def join_from( self, from_: _FromClauseArgument, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, isouter: bool = False, full: bool = False, ) -> Self: r"""Create a SQL JOIN against this :class:`_expression.Select` object's criterion and apply generatively, returning the newly resulting :class:`_expression.Select`. E.g.:: stmt = select(user_table, address_table).join_from( user_table, address_table, user_table.c.id == address_table.c.user_id ) The above statement generates SQL similar to:: SELECT user.id, user.name, address.id, address.email, address.user_id FROM user JOIN address ON user.id = address.user_id .. versionadded:: 1.4 :param from\_: the left side of the join, will be rendered in the FROM clause and is roughly equivalent to using the :meth:`.Select.select_from` method. :param target: target table to join towards :param onclause: ON clause of the join. :param isouter: if True, generate LEFT OUTER join. Same as :meth:`_expression.Select.outerjoin`. :param full: if True, generate FULL OUTER join. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join` """ # noqa: E501 # note the order of parsing from vs. target is important here, as we # are also deriving the source of the plugin (i.e. the subject mapper # in an ORM query) which should favor the "from_" over the "target" from_ = coercions.expect( roles.FromClauseRole, from_, apply_propagate_attrs=self ) join_target = coercions.expect( roles.JoinTargetRole, target, apply_propagate_attrs=self ) if onclause is not None: onclause_element = coercions.expect(roles.OnClauseRole, onclause) else: onclause_element = None self._setup_joins += ( ( join_target, onclause_element, from_, {"isouter": isouter, "full": full}, ), ) return self def outerjoin( self, target: _JoinTargetArgument, onclause: Optional[_OnClauseArgument] = None, *, full: bool = False, ) -> Self: """Create a left outer join. Parameters are the same as that of :meth:`_expression.Select.join`. .. versionchanged:: 1.4 :meth:`_expression.Select.outerjoin` now creates a :class:`_sql.Join` object between a :class:`_sql.FromClause` source that is within the FROM clause of the existing SELECT, and a given target :class:`_sql.FromClause`, and then adds this :class:`_sql.Join` to the FROM clause of the newly generated SELECT statement. This is completely reworked from the behavior in 1.3, which would instead create a subquery of the entire :class:`_expression.Select` and then join that subquery to the target. This is a **backwards incompatible change** as the previous behavior was mostly useless, producing an unnamed subquery rejected by most databases in any case. The new behavior is modeled after that of the very successful :meth:`_orm.Query.join` method in the ORM, in order to support the functionality of :class:`_orm.Query` being available by using a :class:`_sql.Select` object with an :class:`_orm.Session`. See the notes for this change at :ref:`change_select_join`. .. seealso:: :ref:`tutorial_select_join` - in the :doc:`/tutorial/index` :ref:`orm_queryguide_joins` - in the :ref:`queryguide_toplevel` :meth:`_expression.Select.join` """ return self.join(target, onclause=onclause, isouter=True, full=full) def get_final_froms(self) -> Sequence[FromClause]: """Compute the final displayed list of :class:`_expression.FromClause` elements. This method will run through the full computation required to determine what FROM elements will be displayed in the resulting SELECT statement, including shadowing individual tables with JOIN objects, as well as full computation for ORM use cases including eager loading clauses. For ORM use, this accessor returns the **post compilation** list of FROM objects; this collection will include elements such as eagerly loaded tables and joins. The objects will **not** be ORM enabled and not work as a replacement for the :meth:`_sql.Select.select_froms` collection; additionally, the method is not well performing for an ORM enabled statement as it will incur the full ORM construction process. To retrieve the FROM list that's implied by the "columns" collection passed to the :class:`_sql.Select` originally, use the :attr:`_sql.Select.columns_clause_froms` accessor. To select from an alternative set of columns while maintaining the FROM list, use the :meth:`_sql.Select.with_only_columns` method and pass the :paramref:`_sql.Select.with_only_columns.maintain_column_froms` parameter. .. versionadded:: 1.4.23 - the :meth:`_sql.Select.get_final_froms` method replaces the previous :attr:`_sql.Select.froms` accessor, which is deprecated. .. seealso:: :attr:`_sql.Select.columns_clause_froms` """ return self._compile_state_factory(self, None)._get_display_froms() @property @util.deprecated( "1.4.23", "The :attr:`_expression.Select.froms` attribute is moved to " "the :meth:`_expression.Select.get_final_froms` method.", ) def froms(self) -> Sequence[FromClause]: """Return the displayed list of :class:`_expression.FromClause` elements. """ return self.get_final_froms() @property def columns_clause_froms(self) -> List[FromClause]: """Return the set of :class:`_expression.FromClause` objects implied by the columns clause of this SELECT statement. .. versionadded:: 1.4.23 .. seealso:: :attr:`_sql.Select.froms` - "final" FROM list taking the full statement into account :meth:`_sql.Select.with_only_columns` - makes use of this collection to set up a new FROM list """ return SelectState.get_plugin_class(self).get_columns_clause_froms( self ) @property def inner_columns(self) -> _SelectIterable: """An iterator of all :class:`_expression.ColumnElement` expressions which would be rendered into the columns clause of the resulting SELECT statement. This method is legacy as of 1.4 and is superseded by the :attr:`_expression.Select.exported_columns` collection. """ return iter(self._all_selected_columns) def is_derived_from(self, fromclause: Optional[FromClause]) -> bool: if fromclause is not None and self in fromclause._cloned_set: return True for f in self._iterate_from_elements(): if f.is_derived_from(fromclause): return True return False def _copy_internals( self, clone: _CloneCallableType = _clone, **kw: Any ) -> None: # Select() object has been cloned and probably adapted by the # given clone function. Apply the cloning function to internal # objects # 1. keep a dictionary of the froms we've cloned, and what # they've become. This allows us to ensure the same cloned from # is used when other items such as columns are "cloned" all_the_froms = set( itertools.chain( _from_objects(*self._raw_columns), _from_objects(*self._where_criteria), _from_objects(*[elem[0] for elem in self._setup_joins]), ) ) # do a clone for the froms we've gathered. what is important here # is if any of the things we are selecting from, like tables, # were converted into Join objects. if so, these need to be # added to _from_obj explicitly, because otherwise they won't be # part of the new state, as they don't associate themselves with # their columns. new_froms = {f: clone(f, **kw) for f in all_the_froms} # 2. copy FROM collections, adding in joins that we've created. existing_from_obj = [clone(f, **kw) for f in self._from_obj] add_froms = ( {f for f in new_froms.values() if isinstance(f, Join)} .difference(all_the_froms) .difference(existing_from_obj) ) self._from_obj = tuple(existing_from_obj) + tuple(add_froms) # 3. clone everything else, making sure we use columns # corresponding to the froms we just made. def replace( obj: Union[BinaryExpression[Any], ColumnClause[Any]], **kw: Any, ) -> Optional[KeyedColumnElement[ColumnElement[Any]]]: if isinstance(obj, ColumnClause) and obj.table in new_froms: newelem = new_froms[obj.table].corresponding_column(obj) return newelem return None kw["replace"] = replace # copy everything else. for table-ish things like correlate, # correlate_except, setup_joins, these clone normally. For # column-expression oriented things like raw_columns, where_criteria, # order by, we get this from the new froms. super()._copy_internals(clone=clone, omit_attrs=("_from_obj",), **kw) self._reset_memoizations() def get_children(self, **kw: Any) -> Iterable[ClauseElement]: return itertools.chain( super().get_children( omit_attrs=("_from_obj", "_correlate", "_correlate_except"), **kw, ), self._iterate_from_elements(), ) @_generative def add_columns( self, *entities: _ColumnsClauseArgument[Any] ) -> Select[Any]: r"""Return a new :func:`_expression.select` construct with the given entities appended to its columns clause. E.g.:: my_select = my_select.add_columns(table.c.new_column) The original expressions in the columns clause remain in place. To replace the original expressions with new ones, see the method :meth:`_expression.Select.with_only_columns`. :param \*entities: column, table, or other entity expressions to be added to the columns clause .. seealso:: :meth:`_expression.Select.with_only_columns` - replaces existing expressions rather than appending. :ref:`orm_queryguide_select_multiple_entities` - ORM-centric example """ self._reset_memoizations() self._raw_columns = self._raw_columns + [ coercions.expect( roles.ColumnsClauseRole, column, apply_propagate_attrs=self ) for column in entities ] return self def _set_entities( self, entities: Iterable[_ColumnsClauseArgument[Any]] ) -> None: self._raw_columns = [ coercions.expect( roles.ColumnsClauseRole, ent, apply_propagate_attrs=self ) for ent in util.to_list(entities) ] @util.deprecated( "1.4", "The :meth:`_expression.Select.column` method is deprecated and will " "be removed in a future release. Please use " ":meth:`_expression.Select.add_columns`", ) def column(self, column: _ColumnsClauseArgument[Any]) -> Select[Any]: """Return a new :func:`_expression.select` construct with the given column expression added to its columns clause. E.g.:: my_select = my_select.column(table.c.new_column) See the documentation for :meth:`_expression.Select.with_only_columns` for guidelines on adding /replacing the columns of a :class:`_expression.Select` object. """ return self.add_columns(column) @util.preload_module("sqlalchemy.sql.util") def reduce_columns(self, only_synonyms: bool = True) -> Select[Any]: """Return a new :func:`_expression.select` construct with redundantly named, equivalently-valued columns removed from the columns clause. "Redundant" here means two columns where one refers to the other either based on foreign key, or via a simple equality comparison in the WHERE clause of the statement. The primary purpose of this method is to automatically construct a select statement with all uniquely-named columns, without the need to use table-qualified labels as :meth:`_expression.Select.set_label_style` does. When columns are omitted based on foreign key, the referred-to column is the one that's kept. When columns are omitted based on WHERE equivalence, the first column in the columns clause is the one that's kept. :param only_synonyms: when True, limit the removal of columns to those which have the same name as the equivalent. Otherwise, all columns that are equivalent to another are removed. """ woc: Select[Any] woc = self.with_only_columns( *util.preloaded.sql_util.reduce_columns( self._all_selected_columns, only_synonyms=only_synonyms, *(self._where_criteria + self._from_obj), ) ) return woc # START OVERLOADED FUNCTIONS self.with_only_columns Select 8 # code within this block is **programmatically, # statically generated** by tools/generate_sel_v1_overloads.py @overload def with_only_columns(self, __ent0: _TCCA[_T0]) -> Select[Tuple[_T0]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1] ) -> Select[Tuple[_T0, _T1]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2] ) -> Select[Tuple[_T0, _T1, _T2]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], ) -> Select[Tuple[_T0, _T1, _T2, _T3]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6]]: ... @overload def with_only_columns( self, __ent0: _TCCA[_T0], __ent1: _TCCA[_T1], __ent2: _TCCA[_T2], __ent3: _TCCA[_T3], __ent4: _TCCA[_T4], __ent5: _TCCA[_T5], __ent6: _TCCA[_T6], __ent7: _TCCA[_T7], ) -> Select[Tuple[_T0, _T1, _T2, _T3, _T4, _T5, _T6, _T7]]: ... # END OVERLOADED FUNCTIONS self.with_only_columns @overload def with_only_columns( self, *entities: _ColumnsClauseArgument[Any], maintain_column_froms: bool = False, **__kw: Any, ) -> Select[Any]: ... @_generative def with_only_columns( self, *entities: _ColumnsClauseArgument[Any], maintain_column_froms: bool = False, **__kw: Any, ) -> Select[Any]: r"""Return a new :func:`_expression.select` construct with its columns clause replaced with the given entities. By default, this method is exactly equivalent to as if the original :func:`_expression.select` had been called with the given entities. E.g. a statement:: s = select(table1.c.a, table1.c.b) s = s.with_only_columns(table1.c.b) should be exactly equivalent to:: s = select(table1.c.b) In this mode of operation, :meth:`_sql.Select.with_only_columns` will also dynamically alter the FROM clause of the statement if it is not explicitly stated. To maintain the existing set of FROMs including those implied by the current columns clause, add the :paramref:`_sql.Select.with_only_columns.maintain_column_froms` parameter:: s = select(table1.c.a, table2.c.b) s = s.with_only_columns(table1.c.a, maintain_column_froms=True) The above parameter performs a transfer of the effective FROMs in the columns collection to the :meth:`_sql.Select.select_from` method, as though the following were invoked:: s = select(table1.c.a, table2.c.b) s = s.select_from(table1, table2).with_only_columns(table1.c.a) The :paramref:`_sql.Select.with_only_columns.maintain_column_froms` parameter makes use of the :attr:`_sql.Select.columns_clause_froms` collection and performs an operation equivalent to the following:: s = select(table1.c.a, table2.c.b) s = s.select_from(*s.columns_clause_froms).with_only_columns(table1.c.a) :param \*entities: column expressions to be used. :param maintain_column_froms: boolean parameter that will ensure the FROM list implied from the current columns clause will be transferred to the :meth:`_sql.Select.select_from` method first. .. versionadded:: 1.4.23 """ # noqa: E501 if __kw: raise _no_kw() # memoizations should be cleared here as of # I95c560ffcbfa30b26644999412fb6a385125f663 , asserting this # is the case for now. self._assert_no_memoizations() if maintain_column_froms: self.select_from.non_generative( # type: ignore self, *self.columns_clause_froms ) # then memoize the FROMs etc. _MemoizedSelectEntities._generate_for_statement(self) self._raw_columns = [ coercions.expect(roles.ColumnsClauseRole, c) for c in coercions._expression_collection_was_a_list( "entities", "Select.with_only_columns", entities ) ] return self @property def whereclause(self) -> Optional[ColumnElement[Any]]: """Return the completed WHERE clause for this :class:`_expression.Select` statement. This assembles the current collection of WHERE criteria into a single :class:`_expression.BooleanClauseList` construct. .. versionadded:: 1.4 """ return BooleanClauseList._construct_for_whereclause( self._where_criteria ) _whereclause = whereclause @_generative def where(self, *whereclause: _ColumnExpressionArgument[bool]) -> Self: """Return a new :func:`_expression.select` construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. """ assert isinstance(self._where_criteria, tuple) for criterion in whereclause: where_criteria: ColumnElement[Any] = coercions.expect( roles.WhereHavingRole, criterion, apply_propagate_attrs=self ) self._where_criteria += (where_criteria,) return self @_generative def having(self, *having: _ColumnExpressionArgument[bool]) -> Self: """Return a new :func:`_expression.select` construct with the given expression added to its HAVING clause, joined to the existing clause via AND, if any. """ for criterion in having: having_criteria = coercions.expect( roles.WhereHavingRole, criterion, apply_propagate_attrs=self ) self._having_criteria += (having_criteria,) return self @_generative def distinct(self, *expr: _ColumnExpressionArgument[Any]) -> Self: r"""Return a new :func:`_expression.select` construct which will apply DISTINCT to the SELECT statement overall. E.g.:: from sqlalchemy import select stmt = select(users_table.c.id, users_table.c.name).distinct() The above would produce an statement resembling:: SELECT DISTINCT user.id, user.name FROM user The method also accepts an ``*expr`` parameter which produces the PostgreSQL dialect-specific ``DISTINCT ON`` expression. Using this parameter on other backends which don't support this syntax will raise an error. :param \*expr: optional column expressions. When present, the PostgreSQL dialect will render a ``DISTINCT ON (<expressions>)`` construct. A deprecation warning and/or :class:`_exc.CompileError` will be raised on other backends. .. deprecated:: 1.4 Using \*expr in other dialects is deprecated and will raise :class:`_exc.CompileError` in a future version. """ if expr: self._distinct = True self._distinct_on = self._distinct_on + tuple( coercions.expect(roles.ByOfRole, e, apply_propagate_attrs=self) for e in expr ) else: self._distinct = True return self @_generative def select_from(self, *froms: _FromClauseArgument) -> Self: r"""Return a new :func:`_expression.select` construct with the given FROM expression(s) merged into its list of FROM objects. E.g.:: table1 = table('t1', column('a')) table2 = table('t2', column('b')) s = select(table1.c.a).\ select_from( table1.join(table2, table1.c.a==table2.c.b) ) The "from" list is a unique set on the identity of each element, so adding an already present :class:`_schema.Table` or other selectable will have no effect. Passing a :class:`_expression.Join` that refers to an already present :class:`_schema.Table` or other selectable will have the effect of concealing the presence of that selectable as an individual element in the rendered FROM list, instead rendering it into a JOIN clause. While the typical purpose of :meth:`_expression.Select.select_from` is to replace the default, derived FROM clause with a join, it can also be called with individual table elements, multiple times if desired, in the case that the FROM clause cannot be fully derived from the columns clause:: select(func.count('*')).select_from(table1) """ self._from_obj += tuple( coercions.expect( roles.FromClauseRole, fromclause, apply_propagate_attrs=self ) for fromclause in froms ) return self @_generative def correlate( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: r"""Return a new :class:`_expression.Select` which will correlate the given FROM clauses to that of an enclosing :class:`_expression.Select`. Calling this method turns off the :class:`_expression.Select` object's default behavior of "auto-correlation". Normally, FROM elements which appear in a :class:`_expression.Select` that encloses this one via its :term:`WHERE clause`, ORDER BY, HAVING or :term:`columns clause` will be omitted from this :class:`_expression.Select` object's :term:`FROM clause`. Setting an explicit correlation collection using the :meth:`_expression.Select.correlate` method provides a fixed list of FROM objects that can potentially take place in this process. When :meth:`_expression.Select.correlate` is used to apply specific FROM clauses for correlation, the FROM elements become candidates for correlation regardless of how deeply nested this :class:`_expression.Select` object is, relative to an enclosing :class:`_expression.Select` which refers to the same FROM object. This is in contrast to the behavior of "auto-correlation" which only correlates to an immediate enclosing :class:`_expression.Select`. Multi-level correlation ensures that the link between enclosed and enclosing :class:`_expression.Select` is always via at least one WHERE/ORDER BY/HAVING/columns clause in order for correlation to take place. If ``None`` is passed, the :class:`_expression.Select` object will correlate none of its FROM entries, and all will render unconditionally in the local FROM clause. :param \*fromclauses: one or more :class:`.FromClause` or other FROM-compatible construct such as an ORM mapped entity to become part of the correlate collection; alternatively pass a single value ``None`` to remove all existing correlations. .. seealso:: :meth:`_expression.Select.correlate_except` :ref:`tutorial_scalar_subquery` """ # tests failing when we try to change how these # arguments are passed self._auto_correlate = False if not fromclauses or fromclauses[0] in {None, False}: if len(fromclauses) > 1: raise exc.ArgumentError( "additional FROM objects not accepted when " "passing None/False to correlate()" ) self._correlate = () else: self._correlate = self._correlate + tuple( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) return self @_generative def correlate_except( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: r"""Return a new :class:`_expression.Select` which will omit the given FROM clauses from the auto-correlation process. Calling :meth:`_expression.Select.correlate_except` turns off the :class:`_expression.Select` object's default behavior of "auto-correlation" for the given FROM elements. An element specified here will unconditionally appear in the FROM list, while all other FROM elements remain subject to normal auto-correlation behaviors. If ``None`` is passed, or no arguments are passed, the :class:`_expression.Select` object will correlate all of its FROM entries. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate-exception collection. .. seealso:: :meth:`_expression.Select.correlate` :ref:`tutorial_scalar_subquery` """ self._auto_correlate = False if not fromclauses or fromclauses[0] in {None, False}: if len(fromclauses) > 1: raise exc.ArgumentError( "additional FROM objects not accepted when " "passing None/False to correlate_except()" ) self._correlate_except = () else: self._correlate_except = (self._correlate_except or ()) + tuple( coercions.expect(roles.FromClauseRole, f) for f in fromclauses ) return self @HasMemoized_ro_memoized_attribute def selected_columns( self, ) -> ColumnCollection[str, ColumnElement[Any]]: """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. For a :func:`_expression.select` construct, the collection here is exactly what would be rendered inside the "SELECT" statement, and the :class:`_expression.ColumnElement` objects are directly present as they were given, e.g.:: col1 = column('q', Integer) col2 = column('p', Integer) stmt = select(col1, col2) Above, ``stmt.selected_columns`` would be a collection that contains the ``col1`` and ``col2`` objects directly. For a statement that is against a :class:`_schema.Table` or other :class:`_expression.FromClause`, the collection will use the :class:`_expression.ColumnElement` objects that are in the :attr:`_expression.FromClause.c` collection of the from element. A use case for the :attr:`_sql.Select.selected_columns` collection is to allow the existing columns to be referenced when adding additional criteria, e.g.:: def filter_on_id(my_select, id): return my_select.where(my_select.selected_columns['id'] == id) stmt = select(MyModel) # adds "WHERE id=:param" to the statement stmt = filter_on_id(stmt, 42) .. note:: The :attr:`_sql.Select.selected_columns` collection does not include expressions established in the columns clause using the :func:`_sql.text` construct; these are silently omitted from the collection. To use plain textual column expressions inside of a :class:`_sql.Select` construct, use the :func:`_sql.literal_column` construct. .. versionadded:: 1.4 """ # compare to SelectState._generate_columns_plus_names, which # generates the actual names used in the SELECT string. that # method is more complex because it also renders columns that are # fully ambiguous, e.g. same column more than once. conv = cast( "Callable[[Any], str]", SelectState._column_naming_convention(self._label_style), ) cc: ColumnCollection[str, ColumnElement[Any]] = ColumnCollection( [ (conv(c), c) for c in self._all_selected_columns if is_column_element(c) ] ) return cc.as_readonly() @HasMemoized_ro_memoized_attribute def _all_selected_columns(self) -> _SelectIterable: meth = SelectState.get_plugin_class(self).all_selected_columns return list(meth(self)) def _ensure_disambiguated_names(self) -> Select[Any]: if self._label_style is LABEL_STYLE_NONE: self = self.set_label_style(LABEL_STYLE_DISAMBIGUATE_ONLY) return self def _generate_fromclause_column_proxies( self, subquery: FromClause, *, proxy_compound_columns: Optional[ Iterable[Sequence[ColumnElement[Any]]] ] = None, ) -> None: """Generate column proxies to place in the exported ``.c`` collection of a subquery.""" if proxy_compound_columns: extra_col_iterator = proxy_compound_columns prox = [ c._make_proxy( subquery, key=proxy_key, name=required_label_name, name_is_truncatable=True, compound_select_cols=extra_cols, ) for ( ( required_label_name, proxy_key, fallback_label_name, c, repeated, ), extra_cols, ) in ( zip( self._generate_columns_plus_names(False), extra_col_iterator, ) ) if is_column_element(c) ] else: prox = [ c._make_proxy( subquery, key=proxy_key, name=required_label_name, name_is_truncatable=True, ) for ( required_label_name, proxy_key, fallback_label_name, c, repeated, ) in (self._generate_columns_plus_names(False)) if is_column_element(c) ] subquery._columns._populate_separate_keys(prox) def _needs_parens_for_grouping(self) -> bool: return self._has_row_limiting_clause or bool( self._order_by_clause.clauses ) def self_group( self, against: Optional[OperatorType] = None ) -> Union[SelectStatementGrouping[Self], Self]: """Return a 'grouping' construct as per the :class:`_expression.ClauseElement` specification. This produces an element that can be embedded in an expression. Note that this method is called automatically as needed when constructing expressions and should not require explicit use. """ if ( isinstance(against, CompoundSelect) and not self._needs_parens_for_grouping() ): return self else: return SelectStatementGrouping(self) def union( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``UNION`` of this select() construct against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. :param \**kwargs: keyword arguments are forwarded to the constructor for the newly created :class:`_sql.CompoundSelect` object. """ return CompoundSelect._create_union(self, *other) def union_all( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``UNION ALL`` of this select() construct against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. :param \**kwargs: keyword arguments are forwarded to the constructor for the newly created :class:`_sql.CompoundSelect` object. """ return CompoundSelect._create_union_all(self, *other) def except_( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``EXCEPT`` of this select() construct against the given selectable provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. """ return CompoundSelect._create_except(self, *other) def except_all( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``EXCEPT ALL`` of this select() construct against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. """ return CompoundSelect._create_except_all(self, *other) def intersect( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``INTERSECT`` of this select() construct against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. :param \**kwargs: keyword arguments are forwarded to the constructor for the newly created :class:`_sql.CompoundSelect` object. """ return CompoundSelect._create_intersect(self, *other) def intersect_all( self, *other: _SelectStatementForCompoundArgument ) -> CompoundSelect: r"""Return a SQL ``INTERSECT ALL`` of this select() construct against the given selectables provided as positional arguments. :param \*other: one or more elements with which to create a UNION. .. versionchanged:: 1.4.28 multiple elements are now accepted. :param \**kwargs: keyword arguments are forwarded to the constructor for the newly created :class:`_sql.CompoundSelect` object. """ return CompoundSelect._create_intersect_all(self, *other) class ScalarSelect( roles.InElementRole, Generative, GroupedElement, ColumnElement[_T] ): """Represent a scalar subquery. A :class:`_sql.ScalarSelect` is created by invoking the :meth:`_sql.SelectBase.scalar_subquery` method. The object then participates in other SQL expressions as a SQL column expression within the :class:`_sql.ColumnElement` hierarchy. .. seealso:: :meth:`_sql.SelectBase.scalar_subquery` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial """ _traverse_internals: _TraverseInternalsType = [ ("element", InternalTraversal.dp_clauseelement), ("type", InternalTraversal.dp_type), ] _from_objects: List[FromClause] = [] _is_from_container = True if not TYPE_CHECKING: _is_implicitly_boolean = False inherit_cache = True element: SelectBase def __init__(self, element: SelectBase) -> None: self.element = element self.type = element._scalar_type() self._propagate_attrs = element._propagate_attrs def __getattr__(self, attr: str) -> Any: return getattr(self.element, attr) def __getstate__(self) -> Dict[str, Any]: return {"element": self.element, "type": self.type} def __setstate__(self, state: Dict[str, Any]) -> None: self.element = state["element"] self.type = state["type"] @property def columns(self) -> NoReturn: raise exc.InvalidRequestError( "Scalar Select expression has no " "columns; use this object directly " "within a column-level expression." ) c = columns @_generative def where(self, crit: _ColumnExpressionArgument[bool]) -> Self: """Apply a WHERE clause to the SELECT statement referred to by this :class:`_expression.ScalarSelect`. """ self.element = cast("Select[Any]", self.element).where(crit) return self def self_group(self, against: Optional[OperatorType] = None) -> Self: return self if TYPE_CHECKING: def _ungroup(self) -> Select[Any]: ... @_generative def correlate( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: r"""Return a new :class:`_expression.ScalarSelect` which will correlate the given FROM clauses to that of an enclosing :class:`_expression.Select`. This method is mirrored from the :meth:`_sql.Select.correlate` method of the underlying :class:`_sql.Select`. The method applies the :meth:_sql.Select.correlate` method, then returns a new :class:`_sql.ScalarSelect` against that statement. .. versionadded:: 1.4 Previously, the :meth:`_sql.ScalarSelect.correlate` method was only available from :class:`_sql.Select`. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate collection. .. seealso:: :meth:`_expression.ScalarSelect.correlate_except` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial """ self.element = cast("Select[Any]", self.element).correlate( *fromclauses ) return self @_generative def correlate_except( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: r"""Return a new :class:`_expression.ScalarSelect` which will omit the given FROM clauses from the auto-correlation process. This method is mirrored from the :meth:`_sql.Select.correlate_except` method of the underlying :class:`_sql.Select`. The method applies the :meth:_sql.Select.correlate_except` method, then returns a new :class:`_sql.ScalarSelect` against that statement. .. versionadded:: 1.4 Previously, the :meth:`_sql.ScalarSelect.correlate_except` method was only available from :class:`_sql.Select`. :param \*fromclauses: a list of one or more :class:`_expression.FromClause` constructs, or other compatible constructs (i.e. ORM-mapped classes) to become part of the correlate-exception collection. .. seealso:: :meth:`_expression.ScalarSelect.correlate` :ref:`tutorial_scalar_subquery` - in the 2.0 tutorial """ self.element = cast("Select[Any]", self.element).correlate_except( *fromclauses ) return self class Exists(UnaryExpression[bool]): """Represent an ``EXISTS`` clause. See :func:`_sql.exists` for a description of usage. An ``EXISTS`` clause can also be constructed from a :func:`_sql.select` instance by calling :meth:`_sql.SelectBase.exists`. """ inherit_cache = True element: Union[SelectStatementGrouping[Select[Any]], ScalarSelect[Any]] def __init__( self, __argument: Optional[ Union[_ColumnsClauseArgument[Any], SelectBase, ScalarSelect[Any]] ] = None, ): s: ScalarSelect[Any] # TODO: this seems like we should be using coercions for this if __argument is None: s = Select(literal_column("*")).scalar_subquery() elif isinstance(__argument, SelectBase): s = __argument.scalar_subquery() s._propagate_attrs = __argument._propagate_attrs elif isinstance(__argument, ScalarSelect): s = __argument else: s = Select(__argument).scalar_subquery() UnaryExpression.__init__( self, s, operator=operators.exists, type_=type_api.BOOLEANTYPE, wraps_column_expression=True, ) @util.ro_non_memoized_property def _from_objects(self) -> List[FromClause]: return [] def _regroup( self, fn: Callable[[Select[Any]], Select[Any]] ) -> SelectStatementGrouping[Select[Any]]: element = self.element._ungroup() new_element = fn(element) return_value = new_element.self_group(against=operators.exists) assert isinstance(return_value, SelectStatementGrouping) return return_value def select(self) -> Select[Tuple[bool]]: r"""Return a SELECT of this :class:`_expression.Exists`. e.g.:: stmt = exists(some_table.c.id).where(some_table.c.id == 5).select() This will produce a statement resembling:: SELECT EXISTS (SELECT id FROM some_table WHERE some_table = :param) AS anon_1 .. seealso:: :func:`_expression.select` - general purpose method which allows for arbitrary column lists. """ # noqa return Select(self) def correlate( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: """Apply correlation to the subquery noted by this :class:`_sql.Exists`. .. seealso:: :meth:`_sql.ScalarSelect.correlate` """ e = self._clone() e.element = self._regroup( lambda element: element.correlate(*fromclauses) ) return e def correlate_except( self, *fromclauses: Union[Literal[None, False], _FromClauseArgument], ) -> Self: """Apply correlation to the subquery noted by this :class:`_sql.Exists`. .. seealso:: :meth:`_sql.ScalarSelect.correlate_except` """ e = self._clone() e.element = self._regroup( lambda element: element.correlate_except(*fromclauses) ) return e def select_from(self, *froms: _FromClauseArgument) -> Self: """Return a new :class:`_expression.Exists` construct, applying the given expression to the :meth:`_expression.Select.select_from` method of the select statement contained. .. note:: it is typically preferable to build a :class:`_sql.Select` statement first, including the desired WHERE clause, then use the :meth:`_sql.SelectBase.exists` method to produce an :class:`_sql.Exists` object at once. """ e = self._clone() e.element = self._regroup(lambda element: element.select_from(*froms)) return e def where(self, *clause: _ColumnExpressionArgument[bool]) -> Self: """Return a new :func:`_expression.exists` construct with the given expression added to its WHERE clause, joined to the existing clause via AND, if any. .. note:: it is typically preferable to build a :class:`_sql.Select` statement first, including the desired WHERE clause, then use the :meth:`_sql.SelectBase.exists` method to produce an :class:`_sql.Exists` object at once. """ e = self._clone() e.element = self._regroup(lambda element: element.where(*clause)) return e class TextualSelect(SelectBase, ExecutableReturnsRows, Generative): """Wrap a :class:`_expression.TextClause` construct within a :class:`_expression.SelectBase` interface. This allows the :class:`_expression.TextClause` object to gain a ``.c`` collection and other FROM-like capabilities such as :meth:`_expression.FromClause.alias`, :meth:`_expression.SelectBase.cte`, etc. The :class:`_expression.TextualSelect` construct is produced via the :meth:`_expression.TextClause.columns` method - see that method for details. .. versionchanged:: 1.4 the :class:`_expression.TextualSelect` class was renamed from ``TextAsFrom``, to more correctly suit its role as a SELECT-oriented object and not a FROM clause. .. seealso:: :func:`_expression.text` :meth:`_expression.TextClause.columns` - primary creation interface. """ __visit_name__ = "textual_select" _label_style = LABEL_STYLE_NONE _traverse_internals: _TraverseInternalsType = ( [ ("element", InternalTraversal.dp_clauseelement), ("column_args", InternalTraversal.dp_clauseelement_list), ] + SupportsCloneAnnotations._clone_annotations_traverse_internals + HasCTE._has_ctes_traverse_internals ) _is_textual = True is_text = True is_select = True def __init__( self, text: TextClause, columns: List[_ColumnExpressionArgument[Any]], positional: bool = False, ) -> None: self._init( text, # convert for ORM attributes->columns, etc [ coercions.expect(roles.LabeledColumnExprRole, c) for c in columns ], positional, ) def _init( self, text: TextClause, columns: List[NamedColumn[Any]], positional: bool = False, ) -> None: self.element = text self.column_args = columns self.positional = positional @HasMemoized_ro_memoized_attribute def selected_columns( self, ) -> ColumnCollection[str, KeyedColumnElement[Any]]: """A :class:`_expression.ColumnCollection` representing the columns that this SELECT statement or similar construct returns in its result set, not including :class:`_sql.TextClause` constructs. This collection differs from the :attr:`_expression.FromClause.columns` collection of a :class:`_expression.FromClause` in that the columns within this collection cannot be directly nested inside another SELECT statement; a subquery must be applied first which provides for the necessary parenthesization required by SQL. For a :class:`_expression.TextualSelect` construct, the collection contains the :class:`_expression.ColumnElement` objects that were passed to the constructor, typically via the :meth:`_expression.TextClause.columns` method. .. versionadded:: 1.4 """ return ColumnCollection( (c.key, c) for c in self.column_args ).as_readonly() @util.ro_non_memoized_property def _all_selected_columns(self) -> _SelectIterable: return self.column_args def set_label_style(self, style: SelectLabelStyle) -> TextualSelect: return self def _ensure_disambiguated_names(self) -> TextualSelect: return self @_generative def bindparams( self, *binds: BindParameter[Any], **bind_as_values: Any, ) -> Self: self.element = self.element.bindparams(*binds, **bind_as_values) return self def _generate_fromclause_column_proxies( self, fromclause: FromClause, *, proxy_compound_columns: Optional[ Iterable[Sequence[ColumnElement[Any]]] ] = None, ) -> None: if TYPE_CHECKING: assert isinstance(fromclause, Subquery) if proxy_compound_columns: fromclause._columns._populate_separate_keys( c._make_proxy(fromclause, compound_select_cols=extra_cols) for c, extra_cols in zip( self.column_args, proxy_compound_columns ) ) else: fromclause._columns._populate_separate_keys( c._make_proxy(fromclause) for c in self.column_args ) def _scalar_type(self) -> Union[TypeEngine[Any], Any]: return self.column_args[0].type TextAsFrom = TextualSelect """Backwards compatibility with the previous name""" class AnnotatedFromClause(Annotated): def _copy_internals(self, **kw: Any) -> None: super()._copy_internals(**kw) if kw.get("ind_cols_on_fromclause", False): ee = self._Annotated__element # type: ignore self.c = ee.__class__.c.fget(self) # type: ignore @util.ro_memoized_property def c(self) -> ReadOnlyColumnCollection[str, KeyedColumnElement[Any]]: """proxy the .c collection of the underlying FromClause. Originally implemented in 2008 as a simple load of the .c collection when the annotated construct was created (see d3621ae961a), in modern SQLAlchemy versions this can be expensive for statements constructed with ORM aliases. So for #8796 SQLAlchemy 2.0 we instead proxy it, which works just as well. Two different use cases seem to require the collection either copied from the underlying one, or unique to this AnnotatedFromClause. See test_selectable->test_annotated_corresponding_column """ ee = self._Annotated__element # type: ignore return ee.c # type: ignore