AlkantarClanX12
Current Path : /opt/hc_python/lib/python3.8/site-packages/sqlalchemy/dialects/postgresql/ |
Current File : //opt/hc_python/lib/python3.8/site-packages/sqlalchemy/dialects/postgresql/ranges.py |
# dialects/postgresql/ranges.py # Copyright (C) 2013-2024 the SQLAlchemy authors and contributors # <see AUTHORS file> # # This module is part of SQLAlchemy and is released under # the MIT License: https://www.opensource.org/licenses/mit-license.php from __future__ import annotations import dataclasses from datetime import date from datetime import datetime from datetime import timedelta from decimal import Decimal from typing import Any from typing import cast from typing import Generic from typing import List from typing import Optional from typing import overload from typing import Sequence from typing import Tuple from typing import Type from typing import TYPE_CHECKING from typing import TypeVar from typing import Union from .operators import ADJACENT_TO from .operators import CONTAINED_BY from .operators import CONTAINS from .operators import NOT_EXTEND_LEFT_OF from .operators import NOT_EXTEND_RIGHT_OF from .operators import OVERLAP from .operators import STRICTLY_LEFT_OF from .operators import STRICTLY_RIGHT_OF from ... import types as sqltypes from ...sql import operators from ...sql.type_api import TypeEngine from ...util import py310 from ...util.typing import Literal if TYPE_CHECKING: from ...sql.elements import ColumnElement from ...sql.type_api import _TE from ...sql.type_api import TypeEngineMixin _T = TypeVar("_T", bound=Any) _BoundsType = Literal["()", "[)", "(]", "[]"] if py310: dc_slots = {"slots": True} dc_kwonly = {"kw_only": True} else: dc_slots = {} dc_kwonly = {} @dataclasses.dataclass(frozen=True, **dc_slots) class Range(Generic[_T]): """Represent a PostgreSQL range. E.g.:: r = Range(10, 50, bounds="()") The calling style is similar to that of psycopg and psycopg2, in part to allow easier migration from previous SQLAlchemy versions that used these objects directly. :param lower: Lower bound value, or None :param upper: Upper bound value, or None :param bounds: keyword-only, optional string value that is one of ``"()"``, ``"[)"``, ``"(]"``, ``"[]"``. Defaults to ``"[)"``. :param empty: keyword-only, optional bool indicating this is an "empty" range .. versionadded:: 2.0 """ lower: Optional[_T] = None """the lower bound""" upper: Optional[_T] = None """the upper bound""" if TYPE_CHECKING: bounds: _BoundsType = dataclasses.field(default="[)") empty: bool = dataclasses.field(default=False) else: bounds: _BoundsType = dataclasses.field(default="[)", **dc_kwonly) empty: bool = dataclasses.field(default=False, **dc_kwonly) if not py310: def __init__( self, lower: Optional[_T] = None, upper: Optional[_T] = None, *, bounds: _BoundsType = "[)", empty: bool = False, ): # no __slots__ either so we can update dict self.__dict__.update( { "lower": lower, "upper": upper, "bounds": bounds, "empty": empty, } ) def __bool__(self) -> bool: return not self.empty @property def isempty(self) -> bool: "A synonym for the 'empty' attribute." return self.empty @property def is_empty(self) -> bool: "A synonym for the 'empty' attribute." return self.empty @property def lower_inc(self) -> bool: """Return True if the lower bound is inclusive.""" return self.bounds[0] == "[" @property def lower_inf(self) -> bool: """Return True if this range is non-empty and lower bound is infinite.""" return not self.empty and self.lower is None @property def upper_inc(self) -> bool: """Return True if the upper bound is inclusive.""" return self.bounds[1] == "]" @property def upper_inf(self) -> bool: """Return True if this range is non-empty and the upper bound is infinite.""" return not self.empty and self.upper is None @property def __sa_type_engine__(self) -> AbstractSingleRange[_T]: return AbstractSingleRange() def _contains_value(self, value: _T) -> bool: """Return True if this range contains the given value.""" if self.empty: return False if self.lower is None: return self.upper is None or ( value < self.upper if self.bounds[1] == ")" else value <= self.upper ) if self.upper is None: return ( # type: ignore value > self.lower if self.bounds[0] == "(" else value >= self.lower ) return ( # type: ignore value > self.lower if self.bounds[0] == "(" else value >= self.lower ) and ( value < self.upper if self.bounds[1] == ")" else value <= self.upper ) def _get_discrete_step(self) -> Any: "Determine the “step” for this range, if it is a discrete one." # See # https://www.postgresql.org/docs/current/rangetypes.html#RANGETYPES-DISCRETE # for the rationale if isinstance(self.lower, int) or isinstance(self.upper, int): return 1 elif isinstance(self.lower, datetime) or isinstance( self.upper, datetime ): # This is required, because a `isinstance(datetime.now(), date)` # is True return None elif isinstance(self.lower, date) or isinstance(self.upper, date): return timedelta(days=1) else: return None def _compare_edges( self, value1: Optional[_T], bound1: str, value2: Optional[_T], bound2: str, only_values: bool = False, ) -> int: """Compare two range bounds. Return -1, 0 or 1 respectively when `value1` is less than, equal to or greater than `value2`. When `only_value` is ``True``, do not consider the *inclusivity* of the edges, just their values. """ value1_is_lower_bound = bound1 in {"[", "("} value2_is_lower_bound = bound2 in {"[", "("} # Infinite edges are equal when they are on the same side, # otherwise a lower edge is considered less than the upper end if value1 is value2 is None: if value1_is_lower_bound == value2_is_lower_bound: return 0 else: return -1 if value1_is_lower_bound else 1 elif value1 is None: return -1 if value1_is_lower_bound else 1 elif value2 is None: return 1 if value2_is_lower_bound else -1 # Short path for trivial case if bound1 == bound2 and value1 == value2: return 0 value1_inc = bound1 in {"[", "]"} value2_inc = bound2 in {"[", "]"} step = self._get_discrete_step() if step is not None: # "Normalize" the two edges as '[)', to simplify successive # logic when the range is discrete: otherwise we would need # to handle the comparison between ``(0`` and ``[1`` that # are equal when dealing with integers while for floats the # former is lesser than the latter if value1_is_lower_bound: if not value1_inc: value1 += step value1_inc = True else: if value1_inc: value1 += step value1_inc = False if value2_is_lower_bound: if not value2_inc: value2 += step value2_inc = True else: if value2_inc: value2 += step value2_inc = False if value1 < value2: # type: ignore return -1 elif value1 > value2: # type: ignore return 1 elif only_values: return 0 else: # Neither one is infinite but are equal, so we # need to consider the respective inclusive/exclusive # flag if value1_inc and value2_inc: return 0 elif not value1_inc and not value2_inc: if value1_is_lower_bound == value2_is_lower_bound: return 0 else: return 1 if value1_is_lower_bound else -1 elif not value1_inc: return 1 if value1_is_lower_bound else -1 elif not value2_inc: return -1 if value2_is_lower_bound else 1 else: return 0 def __eq__(self, other: Any) -> bool: """Compare this range to the `other` taking into account bounds inclusivity, returning ``True`` if they are equal. """ if not isinstance(other, Range): return NotImplemented if self.empty and other.empty: return True elif self.empty != other.empty: return False slower = self.lower slower_b = self.bounds[0] olower = other.lower olower_b = other.bounds[0] supper = self.upper supper_b = self.bounds[1] oupper = other.upper oupper_b = other.bounds[1] return ( self._compare_edges(slower, slower_b, olower, olower_b) == 0 and self._compare_edges(supper, supper_b, oupper, oupper_b) == 0 ) def contained_by(self, other: Range[_T]) -> bool: "Determine whether this range is a contained by `other`." # Any range contains the empty one if self.empty: return True # An empty range does not contain any range except the empty one if other.empty: return False slower = self.lower slower_b = self.bounds[0] olower = other.lower olower_b = other.bounds[0] if self._compare_edges(slower, slower_b, olower, olower_b) < 0: return False supper = self.upper supper_b = self.bounds[1] oupper = other.upper oupper_b = other.bounds[1] if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0: return False return True def contains(self, value: Union[_T, Range[_T]]) -> bool: "Determine whether this range contains `value`." if isinstance(value, Range): return value.contained_by(self) else: return self._contains_value(value) def overlaps(self, other: Range[_T]) -> bool: "Determine whether this range overlaps with `other`." # Empty ranges never overlap with any other range if self.empty or other.empty: return False slower = self.lower slower_b = self.bounds[0] supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] oupper = other.upper oupper_b = other.bounds[1] # Check whether this lower bound is contained in the other range if ( self._compare_edges(slower, slower_b, olower, olower_b) >= 0 and self._compare_edges(slower, slower_b, oupper, oupper_b) <= 0 ): return True # Check whether other lower bound is contained in this range if ( self._compare_edges(olower, olower_b, slower, slower_b) >= 0 and self._compare_edges(olower, olower_b, supper, supper_b) <= 0 ): return True return False def strictly_left_of(self, other: Range[_T]) -> bool: "Determine whether this range is completely to the left of `other`." # Empty ranges are neither to left nor to the right of any other range if self.empty or other.empty: return False supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] # Check whether this upper edge is less than other's lower end return self._compare_edges(supper, supper_b, olower, olower_b) < 0 __lshift__ = strictly_left_of def strictly_right_of(self, other: Range[_T]) -> bool: "Determine whether this range is completely to the right of `other`." # Empty ranges are neither to left nor to the right of any other range if self.empty or other.empty: return False slower = self.lower slower_b = self.bounds[0] oupper = other.upper oupper_b = other.bounds[1] # Check whether this lower edge is greater than other's upper end return self._compare_edges(slower, slower_b, oupper, oupper_b) > 0 __rshift__ = strictly_right_of def not_extend_left_of(self, other: Range[_T]) -> bool: "Determine whether this does not extend to the left of `other`." # Empty ranges are neither to left nor to the right of any other range if self.empty or other.empty: return False slower = self.lower slower_b = self.bounds[0] olower = other.lower olower_b = other.bounds[0] # Check whether this lower edge is not less than other's lower end return self._compare_edges(slower, slower_b, olower, olower_b) >= 0 def not_extend_right_of(self, other: Range[_T]) -> bool: "Determine whether this does not extend to the right of `other`." # Empty ranges are neither to left nor to the right of any other range if self.empty or other.empty: return False supper = self.upper supper_b = self.bounds[1] oupper = other.upper oupper_b = other.bounds[1] # Check whether this upper edge is not greater than other's upper end return self._compare_edges(supper, supper_b, oupper, oupper_b) <= 0 def _upper_edge_adjacent_to_lower( self, value1: Optional[_T], bound1: str, value2: Optional[_T], bound2: str, ) -> bool: """Determine whether an upper bound is immediately successive to a lower bound.""" # Since we need a peculiar way to handle the bounds inclusivity, # just do a comparison by value here res = self._compare_edges(value1, bound1, value2, bound2, True) if res == -1: step = self._get_discrete_step() if step is None: return False if bound1 == "]": if bound2 == "[": return value1 == value2 - step # type: ignore else: return value1 == value2 else: if bound2 == "[": return value1 == value2 else: return value1 == value2 - step # type: ignore elif res == 0: # Cover cases like [0,0] -|- [1,] and [0,2) -|- (1,3] if ( bound1 == "]" and bound2 == "[" or bound1 == ")" and bound2 == "(" ): step = self._get_discrete_step() if step is not None: return True return ( bound1 == ")" and bound2 == "[" or bound1 == "]" and bound2 == "(" ) else: return False def adjacent_to(self, other: Range[_T]) -> bool: "Determine whether this range is adjacent to the `other`." # Empty ranges are not adjacent to any other range if self.empty or other.empty: return False slower = self.lower slower_b = self.bounds[0] supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] oupper = other.upper oupper_b = other.bounds[1] return self._upper_edge_adjacent_to_lower( supper, supper_b, olower, olower_b ) or self._upper_edge_adjacent_to_lower( oupper, oupper_b, slower, slower_b ) def union(self, other: Range[_T]) -> Range[_T]: """Compute the union of this range with the `other`. This raises a ``ValueError`` exception if the two ranges are "disjunct", that is neither adjacent nor overlapping. """ # Empty ranges are "additive identities" if self.empty: return other if other.empty: return self if not self.overlaps(other) and not self.adjacent_to(other): raise ValueError( "Adding non-overlapping and non-adjacent" " ranges is not implemented" ) slower = self.lower slower_b = self.bounds[0] supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] oupper = other.upper oupper_b = other.bounds[1] if self._compare_edges(slower, slower_b, olower, olower_b) < 0: rlower = slower rlower_b = slower_b else: rlower = olower rlower_b = olower_b if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0: rupper = supper rupper_b = supper_b else: rupper = oupper rupper_b = oupper_b return Range( rlower, rupper, bounds=cast(_BoundsType, rlower_b + rupper_b) ) def __add__(self, other: Range[_T]) -> Range[_T]: return self.union(other) def difference(self, other: Range[_T]) -> Range[_T]: """Compute the difference between this range and the `other`. This raises a ``ValueError`` exception if the two ranges are "disjunct", that is neither adjacent nor overlapping. """ # Subtracting an empty range is a no-op if self.empty or other.empty: return self slower = self.lower slower_b = self.bounds[0] supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] oupper = other.upper oupper_b = other.bounds[1] sl_vs_ol = self._compare_edges(slower, slower_b, olower, olower_b) su_vs_ou = self._compare_edges(supper, supper_b, oupper, oupper_b) if sl_vs_ol < 0 and su_vs_ou > 0: raise ValueError( "Subtracting a strictly inner range is not implemented" ) sl_vs_ou = self._compare_edges(slower, slower_b, oupper, oupper_b) su_vs_ol = self._compare_edges(supper, supper_b, olower, olower_b) # If the ranges do not overlap, result is simply the first if sl_vs_ou > 0 or su_vs_ol < 0: return self # If this range is completely contained by the other, result is empty if sl_vs_ol >= 0 and su_vs_ou <= 0: return Range(None, None, empty=True) # If this range extends to the left of the other and ends in its # middle if sl_vs_ol <= 0 and su_vs_ol >= 0 and su_vs_ou <= 0: rupper_b = ")" if olower_b == "[" else "]" if ( slower_b != "[" and rupper_b != "]" and self._compare_edges(slower, slower_b, olower, rupper_b) == 0 ): return Range(None, None, empty=True) else: return Range( slower, olower, bounds=cast(_BoundsType, slower_b + rupper_b), ) # If this range starts in the middle of the other and extends to its # right if sl_vs_ol >= 0 and su_vs_ou >= 0 and sl_vs_ou <= 0: rlower_b = "(" if oupper_b == "]" else "[" if ( rlower_b != "[" and supper_b != "]" and self._compare_edges(oupper, rlower_b, supper, supper_b) == 0 ): return Range(None, None, empty=True) else: return Range( oupper, supper, bounds=cast(_BoundsType, rlower_b + supper_b), ) assert False, f"Unhandled case computing {self} - {other}" def __sub__(self, other: Range[_T]) -> Range[_T]: return self.difference(other) def intersection(self, other: Range[_T]) -> Range[_T]: """Compute the intersection of this range with the `other`. .. versionadded:: 2.0.10 """ if self.empty or other.empty or not self.overlaps(other): return Range(None, None, empty=True) slower = self.lower slower_b = self.bounds[0] supper = self.upper supper_b = self.bounds[1] olower = other.lower olower_b = other.bounds[0] oupper = other.upper oupper_b = other.bounds[1] if self._compare_edges(slower, slower_b, olower, olower_b) < 0: rlower = olower rlower_b = olower_b else: rlower = slower rlower_b = slower_b if self._compare_edges(supper, supper_b, oupper, oupper_b) > 0: rupper = oupper rupper_b = oupper_b else: rupper = supper rupper_b = supper_b return Range( rlower, rupper, bounds=cast(_BoundsType, rlower_b + rupper_b), ) def __mul__(self, other: Range[_T]) -> Range[_T]: return self.intersection(other) def __str__(self) -> str: return self._stringify() def _stringify(self) -> str: if self.empty: return "empty" l, r = self.lower, self.upper l = "" if l is None else l # type: ignore r = "" if r is None else r # type: ignore b0, b1 = cast("Tuple[str, str]", self.bounds) return f"{b0}{l},{r}{b1}" class MultiRange(List[Range[_T]]): """Represents a multirange sequence. This list subclass is an utility to allow automatic type inference of the proper multi-range SQL type depending on the single range values. This is useful when operating on literal multi-ranges:: import sqlalchemy as sa from sqlalchemy.dialects.postgresql import MultiRange, Range value = literal(MultiRange([Range(2, 4)])) select(tbl).where(tbl.c.value.op("@")(MultiRange([Range(-3, 7)]))) .. versionadded:: 2.0.26 .. seealso:: - :ref:`postgresql_multirange_list_use`. """ @property def __sa_type_engine__(self) -> AbstractMultiRange[_T]: return AbstractMultiRange() class AbstractRange(sqltypes.TypeEngine[_T]): """Base class for single and multi Range SQL types.""" render_bind_cast = True __abstract__ = True @overload def adapt(self, cls: Type[_TE], **kw: Any) -> _TE: ... @overload def adapt( self, cls: Type[TypeEngineMixin], **kw: Any ) -> TypeEngine[Any]: ... def adapt( self, cls: Type[Union[TypeEngine[Any], TypeEngineMixin]], **kw: Any, ) -> TypeEngine[Any]: """Dynamically adapt a range type to an abstract impl. For example ``INT4RANGE().adapt(_Psycopg2NumericRange)`` should produce a type that will have ``_Psycopg2NumericRange`` behaviors and also render as ``INT4RANGE`` in SQL and DDL. """ if ( issubclass(cls, (AbstractSingleRangeImpl, AbstractMultiRangeImpl)) and cls is not self.__class__ ): # two ways to do this are: 1. create a new type on the fly # or 2. have AbstractRangeImpl(visit_name) constructor and a # visit_abstract_range_impl() method in the PG compiler. # I'm choosing #1 as the resulting type object # will then make use of the same mechanics # as if we had made all these sub-types explicitly, and will # also look more obvious under pdb etc. # The adapt() operation here is cached per type-class-per-dialect, # so is not much of a performance concern visit_name = self.__visit_name__ return type( # type: ignore f"{visit_name}RangeImpl", (cls, self.__class__), {"__visit_name__": visit_name}, )() else: return super().adapt(cls) class comparator_factory(TypeEngine.Comparator[Range[Any]]): """Define comparison operations for range types.""" def contains(self, other: Any, **kw: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the right hand operand, which can be an element or a range, is contained within the column. kwargs may be ignored by this operator but are required for API conformance. """ return self.expr.operate(CONTAINS, other) def contained_by(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the column is contained within the right hand operand. """ return self.expr.operate(CONTAINED_BY, other) def overlaps(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the column overlaps (has points in common with) the right hand operand. """ return self.expr.operate(OVERLAP, other) def strictly_left_of(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the column is strictly left of the right hand operand. """ return self.expr.operate(STRICTLY_LEFT_OF, other) __lshift__ = strictly_left_of def strictly_right_of(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the column is strictly right of the right hand operand. """ return self.expr.operate(STRICTLY_RIGHT_OF, other) __rshift__ = strictly_right_of def not_extend_right_of(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the range in the column does not extend right of the range in the operand. """ return self.expr.operate(NOT_EXTEND_RIGHT_OF, other) def not_extend_left_of(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the range in the column does not extend left of the range in the operand. """ return self.expr.operate(NOT_EXTEND_LEFT_OF, other) def adjacent_to(self, other: Any) -> ColumnElement[bool]: """Boolean expression. Returns true if the range in the column is adjacent to the range in the operand. """ return self.expr.operate(ADJACENT_TO, other) def union(self, other: Any) -> ColumnElement[bool]: """Range expression. Returns the union of the two ranges. Will raise an exception if the resulting range is not contiguous. """ return self.expr.operate(operators.add, other) def difference(self, other: Any) -> ColumnElement[bool]: """Range expression. Returns the union of the two ranges. Will raise an exception if the resulting range is not contiguous. """ return self.expr.operate(operators.sub, other) def intersection(self, other: Any) -> ColumnElement[Range[_T]]: """Range expression. Returns the intersection of the two ranges. Will raise an exception if the resulting range is not contiguous. """ return self.expr.operate(operators.mul, other) class AbstractSingleRange(AbstractRange[Range[_T]]): """Base for PostgreSQL RANGE types. These are types that return a single :class:`_postgresql.Range` object. .. seealso:: `PostgreSQL range functions <https://www.postgresql.org/docs/current/static/functions-range.html>`_ """ # noqa: E501 __abstract__ = True def _resolve_for_literal(self, value: Range[Any]) -> Any: spec = value.lower if value.lower is not None else value.upper if isinstance(spec, int): # pg is unreasonably picky here: the query # "select 1::INTEGER <@ '[1, 4)'::INT8RANGE" raises # "operator does not exist: integer <@ int8range" as of pg 16 if _is_int32(value): return INT4RANGE() else: return INT8RANGE() elif isinstance(spec, (Decimal, float)): return NUMRANGE() elif isinstance(spec, datetime): return TSRANGE() if not spec.tzinfo else TSTZRANGE() elif isinstance(spec, date): return DATERANGE() else: # empty Range, SQL datatype can't be determined here return sqltypes.NULLTYPE class AbstractSingleRangeImpl(AbstractSingleRange[_T]): """Marker for AbstractSingleRange that will apply a subclass-specific adaptation""" class AbstractMultiRange(AbstractRange[Sequence[Range[_T]]]): """Base for PostgreSQL MULTIRANGE types. these are types that return a sequence of :class:`_postgresql.Range` objects. """ __abstract__ = True def _resolve_for_literal(self, value: Sequence[Range[Any]]) -> Any: if not value: # empty MultiRange, SQL datatype can't be determined here return sqltypes.NULLTYPE first = value[0] spec = first.lower if first.lower is not None else first.upper if isinstance(spec, int): # pg is unreasonably picky here: the query # "select 1::INTEGER <@ '{[1, 4),[6,19)}'::INT8MULTIRANGE" raises # "operator does not exist: integer <@ int8multirange" as of pg 16 if all(_is_int32(r) for r in value): return INT4MULTIRANGE() else: return INT8MULTIRANGE() elif isinstance(spec, (Decimal, float)): return NUMMULTIRANGE() elif isinstance(spec, datetime): return TSMULTIRANGE() if not spec.tzinfo else TSTZMULTIRANGE() elif isinstance(spec, date): return DATEMULTIRANGE() else: # empty Range, SQL datatype can't be determined here return sqltypes.NULLTYPE class AbstractMultiRangeImpl(AbstractMultiRange[_T]): """Marker for AbstractMultiRange that will apply a subclass-specific adaptation""" class INT4RANGE(AbstractSingleRange[int]): """Represent the PostgreSQL INT4RANGE type.""" __visit_name__ = "INT4RANGE" class INT8RANGE(AbstractSingleRange[int]): """Represent the PostgreSQL INT8RANGE type.""" __visit_name__ = "INT8RANGE" class NUMRANGE(AbstractSingleRange[Decimal]): """Represent the PostgreSQL NUMRANGE type.""" __visit_name__ = "NUMRANGE" class DATERANGE(AbstractSingleRange[date]): """Represent the PostgreSQL DATERANGE type.""" __visit_name__ = "DATERANGE" class TSRANGE(AbstractSingleRange[datetime]): """Represent the PostgreSQL TSRANGE type.""" __visit_name__ = "TSRANGE" class TSTZRANGE(AbstractSingleRange[datetime]): """Represent the PostgreSQL TSTZRANGE type.""" __visit_name__ = "TSTZRANGE" class INT4MULTIRANGE(AbstractMultiRange[int]): """Represent the PostgreSQL INT4MULTIRANGE type.""" __visit_name__ = "INT4MULTIRANGE" class INT8MULTIRANGE(AbstractMultiRange[int]): """Represent the PostgreSQL INT8MULTIRANGE type.""" __visit_name__ = "INT8MULTIRANGE" class NUMMULTIRANGE(AbstractMultiRange[Decimal]): """Represent the PostgreSQL NUMMULTIRANGE type.""" __visit_name__ = "NUMMULTIRANGE" class DATEMULTIRANGE(AbstractMultiRange[date]): """Represent the PostgreSQL DATEMULTIRANGE type.""" __visit_name__ = "DATEMULTIRANGE" class TSMULTIRANGE(AbstractMultiRange[datetime]): """Represent the PostgreSQL TSRANGE type.""" __visit_name__ = "TSMULTIRANGE" class TSTZMULTIRANGE(AbstractMultiRange[datetime]): """Represent the PostgreSQL TSTZRANGE type.""" __visit_name__ = "TSTZMULTIRANGE" _max_int_32 = 2**31 - 1 _min_int_32 = -(2**31) def _is_int32(r: Range[int]) -> bool: return (r.lower is None or _min_int_32 <= r.lower <= _max_int_32) and ( r.upper is None or _min_int_32 <= r.upper <= _max_int_32 )