AlkantarClanX12
Current Path : /opt/hc_python/lib/python3.8/site-packages/sentry_sdk/ |
Current File : //opt/hc_python/lib/python3.8/site-packages/sentry_sdk/consts.py |
import itertools from enum import Enum from typing import TYPE_CHECKING # up top to prevent circular import due to integration import DEFAULT_MAX_VALUE_LENGTH = 1024 # Also needs to be at the top to prevent circular import class EndpointType(Enum): """ The type of an endpoint. This is an enum, rather than a constant, for historical reasons (the old /store endpoint). The enum also preserve future compatibility, in case we ever have a new endpoint. """ ENVELOPE = "envelope" class CompressionAlgo(Enum): GZIP = "gzip" BROTLI = "br" if TYPE_CHECKING: import sentry_sdk from typing import Optional from typing import Callable from typing import Union from typing import List from typing import Type from typing import Dict from typing import Any from typing import Sequence from typing import Tuple from typing_extensions import TypedDict from sentry_sdk._types import ( BreadcrumbProcessor, ContinuousProfilerMode, Event, EventProcessor, Hint, MeasurementUnit, ProfilerMode, TracesSampler, TransactionProcessor, MetricTags, MetricValue, ) # Experiments are feature flags to enable and disable certain unstable SDK # functionality. Changing them from the defaults (`None`) in production # code is highly discouraged. They are not subject to any stability # guarantees such as the ones from semantic versioning. Experiments = TypedDict( "Experiments", { "max_spans": Optional[int], "record_sql_params": Optional[bool], "continuous_profiling_auto_start": Optional[bool], "continuous_profiling_mode": Optional[ContinuousProfilerMode], "otel_powered_performance": Optional[bool], "transport_zlib_compression_level": Optional[int], "transport_compression_level": Optional[int], "transport_compression_algo": Optional[CompressionAlgo], "transport_num_pools": Optional[int], "transport_http2": Optional[bool], "enable_metrics": Optional[bool], "before_emit_metric": Optional[ Callable[[str, MetricValue, MeasurementUnit, MetricTags], bool] ], "metric_code_locations": Optional[bool], }, total=False, ) DEFAULT_QUEUE_SIZE = 100 DEFAULT_MAX_BREADCRUMBS = 100 MATCH_ALL = r".*" FALSE_VALUES = [ "false", "no", "off", "n", "0", ] class INSTRUMENTER: SENTRY = "sentry" OTEL = "otel" class SPANDATA: """ Additional information describing the type of the span. See: https://develop.sentry.dev/sdk/performance/span-data-conventions/ """ AI_FREQUENCY_PENALTY = "ai.frequency_penalty" """ Used to reduce repetitiveness of generated tokens. Example: 0.5 """ AI_PRESENCE_PENALTY = "ai.presence_penalty" """ Used to reduce repetitiveness of generated tokens. Example: 0.5 """ AI_INPUT_MESSAGES = "ai.input_messages" """ The input messages to an LLM call. Example: [{"role": "user", "message": "hello"}] """ AI_MODEL_ID = "ai.model_id" """ The unique descriptor of the model being execugted Example: gpt-4 """ AI_METADATA = "ai.metadata" """ Extra metadata passed to an AI pipeline step. Example: {"executed_function": "add_integers"} """ AI_TAGS = "ai.tags" """ Tags that describe an AI pipeline step. Example: {"executed_function": "add_integers"} """ AI_STREAMING = "ai.streaming" """ Whether or not the AI model call's repsonse was streamed back asynchronously Example: true """ AI_TEMPERATURE = "ai.temperature" """ For an AI model call, the temperature parameter. Temperature essentially means how random the output will be. Example: 0.5 """ AI_TOP_P = "ai.top_p" """ For an AI model call, the top_p parameter. Top_p essentially controls how random the output will be. Example: 0.5 """ AI_TOP_K = "ai.top_k" """ For an AI model call, the top_k parameter. Top_k essentially controls how random the output will be. Example: 35 """ AI_FUNCTION_CALL = "ai.function_call" """ For an AI model call, the function that was called. This is deprecated for OpenAI, and replaced by tool_calls """ AI_TOOL_CALLS = "ai.tool_calls" """ For an AI model call, the function that was called. This is deprecated for OpenAI, and replaced by tool_calls """ AI_TOOLS = "ai.tools" """ For an AI model call, the functions that are available """ AI_RESPONSE_FORMAT = "ai.response_format" """ For an AI model call, the format of the response """ AI_LOGIT_BIAS = "ai.response_format" """ For an AI model call, the logit bias """ AI_PREAMBLE = "ai.preamble" """ For an AI model call, the preamble parameter. Preambles are a part of the prompt used to adjust the model's overall behavior and conversation style. Example: "You are now a clown." """ AI_RAW_PROMPTING = "ai.raw_prompting" """ Minimize pre-processing done to the prompt sent to the LLM. Example: true """ AI_RESPONSES = "ai.responses" """ The responses to an AI model call. Always as a list. Example: ["hello", "world"] """ AI_SEED = "ai.seed" """ The seed, ideally models given the same seed and same other parameters will produce the exact same output. Example: 123.45 """ DB_NAME = "db.name" """ The name of the database being accessed. For commands that switch the database, this should be set to the target database (even if the command fails). Example: myDatabase """ DB_USER = "db.user" """ The name of the database user used for connecting to the database. See: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/database.md Example: my_user """ DB_OPERATION = "db.operation" """ The name of the operation being executed, e.g. the MongoDB command name such as findAndModify, or the SQL keyword. See: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/database.md Example: findAndModify, HMSET, SELECT """ DB_SYSTEM = "db.system" """ An identifier for the database management system (DBMS) product being used. See: https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/trace/semantic_conventions/database.md Example: postgresql """ DB_MONGODB_COLLECTION = "db.mongodb.collection" """ The MongoDB collection being accessed within the database. See: https://github.com/open-telemetry/semantic-conventions/blob/main/docs/database/mongodb.md#attributes Example: public.users; customers """ CACHE_HIT = "cache.hit" """ A boolean indicating whether the requested data was found in the cache. Example: true """ CACHE_ITEM_SIZE = "cache.item_size" """ The size of the requested data in bytes. Example: 58 """ CACHE_KEY = "cache.key" """ The key of the requested data. Example: template.cache.some_item.867da7e2af8e6b2f3aa7213a4080edb3 """ NETWORK_PEER_ADDRESS = "network.peer.address" """ Peer address of the network connection - IP address or Unix domain socket name. Example: 10.1.2.80, /tmp/my.sock, localhost """ NETWORK_PEER_PORT = "network.peer.port" """ Peer port number of the network connection. Example: 6379 """ HTTP_QUERY = "http.query" """ The Query string present in the URL. Example: ?foo=bar&bar=baz """ HTTP_FRAGMENT = "http.fragment" """ The Fragments present in the URL. Example: #foo=bar """ HTTP_METHOD = "http.method" """ The HTTP method used. Example: GET """ HTTP_STATUS_CODE = "http.response.status_code" """ The HTTP status code as an integer. Example: 418 """ MESSAGING_DESTINATION_NAME = "messaging.destination.name" """ The destination name where the message is being consumed from, e.g. the queue name or topic. """ MESSAGING_MESSAGE_ID = "messaging.message.id" """ The message's identifier. """ MESSAGING_MESSAGE_RETRY_COUNT = "messaging.message.retry.count" """ Number of retries/attempts to process a message. """ MESSAGING_MESSAGE_RECEIVE_LATENCY = "messaging.message.receive.latency" """ The latency between when the task was enqueued and when it was started to be processed. """ MESSAGING_SYSTEM = "messaging.system" """ The messaging system's name, e.g. `kafka`, `aws_sqs` """ SERVER_ADDRESS = "server.address" """ Name of the database host. Example: example.com """ SERVER_PORT = "server.port" """ Logical server port number Example: 80; 8080; 443 """ SERVER_SOCKET_ADDRESS = "server.socket.address" """ Physical server IP address or Unix socket address. Example: 10.5.3.2 """ SERVER_SOCKET_PORT = "server.socket.port" """ Physical server port. Recommended: If different than server.port. Example: 16456 """ CODE_FILEPATH = "code.filepath" """ The source code file name that identifies the code unit as uniquely as possible (preferably an absolute file path). Example: "/app/myapplication/http/handler/server.py" """ CODE_LINENO = "code.lineno" """ The line number in `code.filepath` best representing the operation. It SHOULD point within the code unit named in `code.function`. Example: 42 """ CODE_FUNCTION = "code.function" """ The method or function name, or equivalent (usually rightmost part of the code unit's name). Example: "server_request" """ CODE_NAMESPACE = "code.namespace" """ The "namespace" within which `code.function` is defined. Usually the qualified class or module name, such that `code.namespace` + some separator + `code.function` form a unique identifier for the code unit. Example: "http.handler" """ THREAD_ID = "thread.id" """ Identifier of a thread from where the span originated. This should be a string. Example: "7972576320" """ THREAD_NAME = "thread.name" """ Label identifying a thread from where the span originated. This should be a string. Example: "MainThread" """ PROFILER_ID = "profiler_id" """ Label identifying the profiler id that the span occurred in. This should be a string. Example: "5249fbada8d5416482c2f6e47e337372" """ class SPANSTATUS: """ The status of a Sentry span. See: https://develop.sentry.dev/sdk/event-payloads/contexts/#trace-context """ ABORTED = "aborted" ALREADY_EXISTS = "already_exists" CANCELLED = "cancelled" DATA_LOSS = "data_loss" DEADLINE_EXCEEDED = "deadline_exceeded" FAILED_PRECONDITION = "failed_precondition" INTERNAL_ERROR = "internal_error" INVALID_ARGUMENT = "invalid_argument" NOT_FOUND = "not_found" OK = "ok" OUT_OF_RANGE = "out_of_range" PERMISSION_DENIED = "permission_denied" RESOURCE_EXHAUSTED = "resource_exhausted" UNAUTHENTICATED = "unauthenticated" UNAVAILABLE = "unavailable" UNIMPLEMENTED = "unimplemented" UNKNOWN_ERROR = "unknown_error" class OP: ANTHROPIC_MESSAGES_CREATE = "ai.messages.create.anthropic" CACHE_GET = "cache.get" CACHE_PUT = "cache.put" COHERE_CHAT_COMPLETIONS_CREATE = "ai.chat_completions.create.cohere" COHERE_EMBEDDINGS_CREATE = "ai.embeddings.create.cohere" DB = "db" DB_REDIS = "db.redis" EVENT_DJANGO = "event.django" FUNCTION = "function" FUNCTION_AWS = "function.aws" FUNCTION_GCP = "function.gcp" GRAPHQL_EXECUTE = "graphql.execute" GRAPHQL_MUTATION = "graphql.mutation" GRAPHQL_PARSE = "graphql.parse" GRAPHQL_RESOLVE = "graphql.resolve" GRAPHQL_SUBSCRIPTION = "graphql.subscription" GRAPHQL_QUERY = "graphql.query" GRAPHQL_VALIDATE = "graphql.validate" GRPC_CLIENT = "grpc.client" GRPC_SERVER = "grpc.server" HTTP_CLIENT = "http.client" HTTP_CLIENT_STREAM = "http.client.stream" HTTP_SERVER = "http.server" MIDDLEWARE_DJANGO = "middleware.django" MIDDLEWARE_LITESTAR = "middleware.litestar" MIDDLEWARE_LITESTAR_RECEIVE = "middleware.litestar.receive" MIDDLEWARE_LITESTAR_SEND = "middleware.litestar.send" MIDDLEWARE_STARLETTE = "middleware.starlette" MIDDLEWARE_STARLETTE_RECEIVE = "middleware.starlette.receive" MIDDLEWARE_STARLETTE_SEND = "middleware.starlette.send" MIDDLEWARE_STARLITE = "middleware.starlite" MIDDLEWARE_STARLITE_RECEIVE = "middleware.starlite.receive" MIDDLEWARE_STARLITE_SEND = "middleware.starlite.send" OPENAI_CHAT_COMPLETIONS_CREATE = "ai.chat_completions.create.openai" OPENAI_EMBEDDINGS_CREATE = "ai.embeddings.create.openai" HUGGINGFACE_HUB_CHAT_COMPLETIONS_CREATE = ( "ai.chat_completions.create.huggingface_hub" ) LANGCHAIN_PIPELINE = "ai.pipeline.langchain" LANGCHAIN_RUN = "ai.run.langchain" LANGCHAIN_TOOL = "ai.tool.langchain" LANGCHAIN_AGENT = "ai.agent.langchain" LANGCHAIN_CHAT_COMPLETIONS_CREATE = "ai.chat_completions.create.langchain" QUEUE_PROCESS = "queue.process" QUEUE_PUBLISH = "queue.publish" QUEUE_SUBMIT_ARQ = "queue.submit.arq" QUEUE_TASK_ARQ = "queue.task.arq" QUEUE_SUBMIT_CELERY = "queue.submit.celery" QUEUE_TASK_CELERY = "queue.task.celery" QUEUE_TASK_RQ = "queue.task.rq" QUEUE_SUBMIT_HUEY = "queue.submit.huey" QUEUE_TASK_HUEY = "queue.task.huey" QUEUE_SUBMIT_RAY = "queue.submit.ray" QUEUE_TASK_RAY = "queue.task.ray" SUBPROCESS = "subprocess" SUBPROCESS_WAIT = "subprocess.wait" SUBPROCESS_COMMUNICATE = "subprocess.communicate" TEMPLATE_RENDER = "template.render" VIEW_RENDER = "view.render" VIEW_RESPONSE_RENDER = "view.response.render" WEBSOCKET_SERVER = "websocket.server" SOCKET_CONNECTION = "socket.connection" SOCKET_DNS = "socket.dns" # This type exists to trick mypy and PyCharm into thinking `init` and `Client` # take these arguments (even though they take opaque **kwargs) class ClientConstructor: def __init__( self, dsn=None, # type: Optional[str] *, max_breadcrumbs=DEFAULT_MAX_BREADCRUMBS, # type: int release=None, # type: Optional[str] environment=None, # type: Optional[str] server_name=None, # type: Optional[str] shutdown_timeout=2, # type: float integrations=[], # type: Sequence[sentry_sdk.integrations.Integration] # noqa: B006 in_app_include=[], # type: List[str] # noqa: B006 in_app_exclude=[], # type: List[str] # noqa: B006 default_integrations=True, # type: bool dist=None, # type: Optional[str] transport=None, # type: Optional[Union[sentry_sdk.transport.Transport, Type[sentry_sdk.transport.Transport], Callable[[Event], None]]] transport_queue_size=DEFAULT_QUEUE_SIZE, # type: int sample_rate=1.0, # type: float send_default_pii=False, # type: bool http_proxy=None, # type: Optional[str] https_proxy=None, # type: Optional[str] ignore_errors=[], # type: Sequence[Union[type, str]] # noqa: B006 max_request_body_size="medium", # type: str socket_options=None, # type: Optional[List[Tuple[int, int, int | bytes]]] keep_alive=False, # type: bool before_send=None, # type: Optional[EventProcessor] before_breadcrumb=None, # type: Optional[BreadcrumbProcessor] debug=None, # type: Optional[bool] attach_stacktrace=False, # type: bool ca_certs=None, # type: Optional[str] propagate_traces=True, # type: bool traces_sample_rate=None, # type: Optional[float] traces_sampler=None, # type: Optional[TracesSampler] profiles_sample_rate=None, # type: Optional[float] profiles_sampler=None, # type: Optional[TracesSampler] profiler_mode=None, # type: Optional[ProfilerMode] auto_enabling_integrations=True, # type: bool disabled_integrations=None, # type: Optional[Sequence[sentry_sdk.integrations.Integration]] auto_session_tracking=True, # type: bool send_client_reports=True, # type: bool _experiments={}, # type: Experiments # noqa: B006 proxy_headers=None, # type: Optional[Dict[str, str]] instrumenter=INSTRUMENTER.SENTRY, # type: Optional[str] before_send_transaction=None, # type: Optional[TransactionProcessor] project_root=None, # type: Optional[str] enable_tracing=None, # type: Optional[bool] include_local_variables=True, # type: Optional[bool] include_source_context=True, # type: Optional[bool] trace_propagation_targets=[ # noqa: B006 MATCH_ALL ], # type: Optional[Sequence[str]] functions_to_trace=[], # type: Sequence[Dict[str, str]] # noqa: B006 event_scrubber=None, # type: Optional[sentry_sdk.scrubber.EventScrubber] max_value_length=DEFAULT_MAX_VALUE_LENGTH, # type: int enable_backpressure_handling=True, # type: bool error_sampler=None, # type: Optional[Callable[[Event, Hint], Union[float, bool]]] enable_db_query_source=True, # type: bool db_query_source_threshold_ms=100, # type: int spotlight=None, # type: Optional[Union[bool, str]] cert_file=None, # type: Optional[str] key_file=None, # type: Optional[str] custom_repr=None, # type: Optional[Callable[..., Optional[str]]] ): # type: (...) -> None pass def _get_default_options(): # type: () -> dict[str, Any] import inspect a = inspect.getfullargspec(ClientConstructor.__init__) defaults = a.defaults or () kwonlydefaults = a.kwonlydefaults or {} return dict( itertools.chain( zip(a.args[-len(defaults) :], defaults), kwonlydefaults.items(), ) ) DEFAULT_OPTIONS = _get_default_options() del _get_default_options VERSION = "2.17.0"