AlkantarClanX12
Current Path : /opt/hc_python/lib/python3.8/site-packages/pydantic/_internal/ |
Current File : //opt/hc_python/lib/python3.8/site-packages/pydantic/_internal/_validators.py |
"""Validator functions for standard library types. Import of this module is deferred since it contains imports of many standard library modules. """ from __future__ import annotations as _annotations import math import re import typing from ipaddress import IPv4Address, IPv4Interface, IPv4Network, IPv6Address, IPv6Interface, IPv6Network from typing import Any, Callable from pydantic_core import PydanticCustomError, core_schema from pydantic_core._pydantic_core import PydanticKnownError def sequence_validator( input_value: typing.Sequence[Any], /, validator: core_schema.ValidatorFunctionWrapHandler, ) -> typing.Sequence[Any]: """Validator for `Sequence` types, isinstance(v, Sequence) has already been called.""" value_type = type(input_value) # We don't accept any plain string as a sequence # Relevant issue: https://github.com/pydantic/pydantic/issues/5595 if issubclass(value_type, (str, bytes)): raise PydanticCustomError( 'sequence_str', "'{type_name}' instances are not allowed as a Sequence value", {'type_name': value_type.__name__}, ) # TODO: refactor sequence validation to validate with either a list or a tuple # schema, depending on the type of the value. # Additionally, we should be able to remove one of either this validator or the # SequenceValidator in _std_types_schema.py (preferably this one, while porting over some logic). # Effectively, a refactor for sequence validation is needed. if value_type is tuple: input_value = list(input_value) v_list = validator(input_value) # the rest of the logic is just re-creating the original type from `v_list` if value_type is list: return v_list elif issubclass(value_type, range): # return the list as we probably can't re-create the range return v_list elif value_type is tuple: return tuple(v_list) else: # best guess at how to re-create the original type, more custom construction logic might be required return value_type(v_list) # type: ignore[call-arg] def import_string(value: Any) -> Any: if isinstance(value, str): try: return _import_string_logic(value) except ImportError as e: raise PydanticCustomError('import_error', 'Invalid python path: {error}', {'error': str(e)}) from e else: # otherwise we just return the value and let the next validator do the rest of the work return value def _import_string_logic(dotted_path: str) -> Any: """Inspired by uvicorn — dotted paths should include a colon before the final item if that item is not a module. (This is necessary to distinguish between a submodule and an attribute when there is a conflict.). If the dotted path does not include a colon and the final item is not a valid module, importing as an attribute rather than a submodule will be attempted automatically. So, for example, the following values of `dotted_path` result in the following returned values: * 'collections': <module 'collections'> * 'collections.abc': <module 'collections.abc'> * 'collections.abc:Mapping': <class 'collections.abc.Mapping'> * `collections.abc.Mapping`: <class 'collections.abc.Mapping'> (though this is a bit slower than the previous line) An error will be raised under any of the following scenarios: * `dotted_path` contains more than one colon (e.g., 'collections:abc:Mapping') * the substring of `dotted_path` before the colon is not a valid module in the environment (e.g., '123:Mapping') * the substring of `dotted_path` after the colon is not an attribute of the module (e.g., 'collections:abc123') """ from importlib import import_module components = dotted_path.strip().split(':') if len(components) > 2: raise ImportError(f"Import strings should have at most one ':'; received {dotted_path!r}") module_path = components[0] if not module_path: raise ImportError(f'Import strings should have a nonempty module name; received {dotted_path!r}') try: module = import_module(module_path) except ModuleNotFoundError as e: if '.' in module_path: # Check if it would be valid if the final item was separated from its module with a `:` maybe_module_path, maybe_attribute = dotted_path.strip().rsplit('.', 1) try: return _import_string_logic(f'{maybe_module_path}:{maybe_attribute}') except ImportError: pass raise ImportError(f'No module named {module_path!r}') from e raise e if len(components) > 1: attribute = components[1] try: return getattr(module, attribute) except AttributeError as e: raise ImportError(f'cannot import name {attribute!r} from {module_path!r}') from e else: return module def pattern_either_validator(input_value: Any, /) -> typing.Pattern[Any]: if isinstance(input_value, typing.Pattern): return input_value elif isinstance(input_value, (str, bytes)): # todo strict mode return compile_pattern(input_value) # type: ignore else: raise PydanticCustomError('pattern_type', 'Input should be a valid pattern') def pattern_str_validator(input_value: Any, /) -> typing.Pattern[str]: if isinstance(input_value, typing.Pattern): if isinstance(input_value.pattern, str): return input_value else: raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern') elif isinstance(input_value, str): return compile_pattern(input_value) elif isinstance(input_value, bytes): raise PydanticCustomError('pattern_str_type', 'Input should be a string pattern') else: raise PydanticCustomError('pattern_type', 'Input should be a valid pattern') def pattern_bytes_validator(input_value: Any, /) -> typing.Pattern[bytes]: if isinstance(input_value, typing.Pattern): if isinstance(input_value.pattern, bytes): return input_value else: raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern') elif isinstance(input_value, bytes): return compile_pattern(input_value) elif isinstance(input_value, str): raise PydanticCustomError('pattern_bytes_type', 'Input should be a bytes pattern') else: raise PydanticCustomError('pattern_type', 'Input should be a valid pattern') PatternType = typing.TypeVar('PatternType', str, bytes) def compile_pattern(pattern: PatternType) -> typing.Pattern[PatternType]: try: return re.compile(pattern) except re.error: raise PydanticCustomError('pattern_regex', 'Input should be a valid regular expression') def ip_v4_address_validator(input_value: Any, /) -> IPv4Address: if isinstance(input_value, IPv4Address): return input_value try: return IPv4Address(input_value) except ValueError: raise PydanticCustomError('ip_v4_address', 'Input is not a valid IPv4 address') def ip_v6_address_validator(input_value: Any, /) -> IPv6Address: if isinstance(input_value, IPv6Address): return input_value try: return IPv6Address(input_value) except ValueError: raise PydanticCustomError('ip_v6_address', 'Input is not a valid IPv6 address') def ip_v4_network_validator(input_value: Any, /) -> IPv4Network: """Assume IPv4Network initialised with a default `strict` argument. See more: https://docs.python.org/library/ipaddress.html#ipaddress.IPv4Network """ if isinstance(input_value, IPv4Network): return input_value try: return IPv4Network(input_value) except ValueError: raise PydanticCustomError('ip_v4_network', 'Input is not a valid IPv4 network') def ip_v6_network_validator(input_value: Any, /) -> IPv6Network: """Assume IPv6Network initialised with a default `strict` argument. See more: https://docs.python.org/library/ipaddress.html#ipaddress.IPv6Network """ if isinstance(input_value, IPv6Network): return input_value try: return IPv6Network(input_value) except ValueError: raise PydanticCustomError('ip_v6_network', 'Input is not a valid IPv6 network') def ip_v4_interface_validator(input_value: Any, /) -> IPv4Interface: if isinstance(input_value, IPv4Interface): return input_value try: return IPv4Interface(input_value) except ValueError: raise PydanticCustomError('ip_v4_interface', 'Input is not a valid IPv4 interface') def ip_v6_interface_validator(input_value: Any, /) -> IPv6Interface: if isinstance(input_value, IPv6Interface): return input_value try: return IPv6Interface(input_value) except ValueError: raise PydanticCustomError('ip_v6_interface', 'Input is not a valid IPv6 interface') def greater_than_validator(x: Any, gt: Any) -> Any: if not (x > gt): raise PydanticKnownError('greater_than', {'gt': gt}) return x def greater_than_or_equal_validator(x: Any, ge: Any) -> Any: if not (x >= ge): raise PydanticKnownError('greater_than_equal', {'ge': ge}) return x def less_than_validator(x: Any, lt: Any) -> Any: if not (x < lt): raise PydanticKnownError('less_than', {'lt': lt}) return x def less_than_or_equal_validator(x: Any, le: Any) -> Any: if not (x <= le): raise PydanticKnownError('less_than_equal', {'le': le}) return x def multiple_of_validator(x: Any, multiple_of: Any) -> Any: if not (x % multiple_of == 0): raise PydanticKnownError('multiple_of', {'multiple_of': multiple_of}) return x def min_length_validator(x: Any, min_length: Any) -> Any: if not (len(x) >= min_length): raise PydanticKnownError( 'too_short', {'field_type': 'Value', 'min_length': min_length, 'actual_length': len(x)}, ) return x def max_length_validator(x: Any, max_length: Any) -> Any: if len(x) > max_length: raise PydanticKnownError( 'too_long', {'field_type': 'Value', 'max_length': max_length, 'actual_length': len(x)}, ) return x def forbid_inf_nan_check(x: Any) -> Any: if not math.isfinite(x): raise PydanticKnownError('finite_number') return x _CONSTRAINT_TO_VALIDATOR_MAP: dict[str, Callable] = { 'gt': greater_than_validator, 'ge': greater_than_or_equal_validator, 'lt': less_than_validator, 'le': less_than_or_equal_validator, 'multiple_of': multiple_of_validator, 'min_length': min_length_validator, 'max_length': max_length_validator, } def get_constraint_validator(constraint: str) -> Callable: """Fetch the validator function for the given constraint.""" try: return _CONSTRAINT_TO_VALIDATOR_MAP[constraint] except KeyError: raise TypeError(f'Unknown constraint {constraint}')