AlkantarClanX12
Current Path : /opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/v1/ |
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/pydantic/v1/generics.py |
import sys import types import typing from typing import ( TYPE_CHECKING, Any, ClassVar, Dict, ForwardRef, Generic, Iterator, List, Mapping, Optional, Tuple, Type, TypeVar, Union, cast, ) from weakref import WeakKeyDictionary, WeakValueDictionary from typing_extensions import Annotated, Literal as ExtLiteral from .class_validators import gather_all_validators from .fields import DeferredType from .main import BaseModel, create_model from .types import JsonWrapper from .typing import display_as_type, get_all_type_hints, get_args, get_origin, typing_base from .utils import all_identical, lenient_issubclass if sys.version_info >= (3, 10): from typing import _UnionGenericAlias if sys.version_info >= (3, 8): from typing import Literal GenericModelT = TypeVar('GenericModelT', bound='GenericModel') TypeVarType = Any # since mypy doesn't allow the use of TypeVar as a type CacheKey = Tuple[Type[Any], Any, Tuple[Any, ...]] Parametrization = Mapping[TypeVarType, Type[Any]] # weak dictionaries allow the dynamically created parametrized versions of generic models to get collected # once they are no longer referenced by the caller. if sys.version_info >= (3, 9): # Typing for weak dictionaries available at 3.9 GenericTypesCache = WeakValueDictionary[CacheKey, Type[BaseModel]] AssignedParameters = WeakKeyDictionary[Type[BaseModel], Parametrization] else: GenericTypesCache = WeakValueDictionary AssignedParameters = WeakKeyDictionary # _generic_types_cache is a Mapping from __class_getitem__ arguments to the parametrized version of generic models. # This ensures multiple calls of e.g. A[B] return always the same class. _generic_types_cache = GenericTypesCache() # _assigned_parameters is a Mapping from parametrized version of generic models to assigned types of parametrizations # as captured during construction of the class (not instances). # E.g., for generic model `Model[A, B]`, when parametrized model `Model[int, str]` is created, # `Model[int, str]`: {A: int, B: str}` will be stored in `_assigned_parameters`. # (This information is only otherwise available after creation from the class name string). _assigned_parameters = AssignedParameters() class GenericModel(BaseModel): __slots__ = () __concrete__: ClassVar[bool] = False if TYPE_CHECKING: # Putting this in a TYPE_CHECKING block allows us to replace `if Generic not in cls.__bases__` with # `not hasattr(cls, "__parameters__")`. This means we don't need to force non-concrete subclasses of # `GenericModel` to also inherit from `Generic`, which would require changes to the use of `create_model` below. __parameters__: ClassVar[Tuple[TypeVarType, ...]] # Setting the return type as Type[Any] instead of Type[BaseModel] prevents PyCharm warnings def __class_getitem__(cls: Type[GenericModelT], params: Union[Type[Any], Tuple[Type[Any], ...]]) -> Type[Any]: """Instantiates a new class from a generic class `cls` and type variables `params`. :param params: Tuple of types the class . Given a generic class `Model` with 2 type variables and a concrete model `Model[str, int]`, the value `(str, int)` would be passed to `params`. :return: New model class inheriting from `cls` with instantiated types described by `params`. If no parameters are given, `cls` is returned as is. """ def _cache_key(_params: Any) -> CacheKey: args = get_args(_params) # python returns a list for Callables, which is not hashable if len(args) == 2 and isinstance(args[0], list): args = (tuple(args[0]), args[1]) return cls, _params, args cached = _generic_types_cache.get(_cache_key(params)) if cached is not None: return cached if cls.__concrete__ and Generic not in cls.__bases__: raise TypeError('Cannot parameterize a concrete instantiation of a generic model') if not isinstance(params, tuple): params = (params,) if cls is GenericModel and any(isinstance(param, TypeVar) for param in params): raise TypeError('Type parameters should be placed on typing.Generic, not GenericModel') if not hasattr(cls, '__parameters__'): raise TypeError(f'Type {cls.__name__} must inherit from typing.Generic before being parameterized') check_parameters_count(cls, params) # Build map from generic typevars to passed params typevars_map: Dict[TypeVarType, Type[Any]] = dict(zip(cls.__parameters__, params)) if all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map: return cls # if arguments are equal to parameters it's the same object # Create new model with original model as parent inserting fields with DeferredType. model_name = cls.__concrete_name__(params) validators = gather_all_validators(cls) type_hints = get_all_type_hints(cls).items() instance_type_hints = {k: v for k, v in type_hints if get_origin(v) is not ClassVar} fields = {k: (DeferredType(), cls.__fields__[k].field_info) for k in instance_type_hints if k in cls.__fields__} model_module, called_globally = get_caller_frame_info() created_model = cast( Type[GenericModel], # casting ensures mypy is aware of the __concrete__ and __parameters__ attributes create_model( model_name, __module__=model_module or cls.__module__, __base__=(cls,) + tuple(cls.__parameterized_bases__(typevars_map)), __config__=None, __validators__=validators, __cls_kwargs__=None, **fields, ), ) _assigned_parameters[created_model] = typevars_map if called_globally: # create global reference and therefore allow pickling object_by_reference = None reference_name = model_name reference_module_globals = sys.modules[created_model.__module__].__dict__ while object_by_reference is not created_model: object_by_reference = reference_module_globals.setdefault(reference_name, created_model) reference_name += '_' created_model.Config = cls.Config # Find any typevars that are still present in the model. # If none are left, the model is fully "concrete", otherwise the new # class is a generic class as well taking the found typevars as # parameters. new_params = tuple( {param: None for param in iter_contained_typevars(typevars_map.values())} ) # use dict as ordered set created_model.__concrete__ = not new_params if new_params: created_model.__parameters__ = new_params # Save created model in cache so we don't end up creating duplicate # models that should be identical. _generic_types_cache[_cache_key(params)] = created_model if len(params) == 1: _generic_types_cache[_cache_key(params[0])] = created_model # Recursively walk class type hints and replace generic typevars # with concrete types that were passed. _prepare_model_fields(created_model, fields, instance_type_hints, typevars_map) return created_model @classmethod def __concrete_name__(cls: Type[Any], params: Tuple[Type[Any], ...]) -> str: """Compute class name for child classes. :param params: Tuple of types the class . Given a generic class `Model` with 2 type variables and a concrete model `Model[str, int]`, the value `(str, int)` would be passed to `params`. :return: String representing a the new class where `params` are passed to `cls` as type variables. This method can be overridden to achieve a custom naming scheme for GenericModels. """ param_names = [display_as_type(param) for param in params] params_component = ', '.join(param_names) return f'{cls.__name__}[{params_component}]' @classmethod def __parameterized_bases__(cls, typevars_map: Parametrization) -> Iterator[Type[Any]]: """ Returns unbound bases of cls parameterised to given type variables :param typevars_map: Dictionary of type applications for binding subclasses. Given a generic class `Model` with 2 type variables [S, T] and a concrete model `Model[str, int]`, the value `{S: str, T: int}` would be passed to `typevars_map`. :return: an iterator of generic sub classes, parameterised by `typevars_map` and other assigned parameters of `cls` e.g.: ``` class A(GenericModel, Generic[T]): ... class B(A[V], Generic[V]): ... assert A[int] in B.__parameterized_bases__({V: int}) ``` """ def build_base_model( base_model: Type[GenericModel], mapped_types: Parametrization ) -> Iterator[Type[GenericModel]]: base_parameters = tuple(mapped_types[param] for param in base_model.__parameters__) parameterized_base = base_model.__class_getitem__(base_parameters) if parameterized_base is base_model or parameterized_base is cls: # Avoid duplication in MRO return yield parameterized_base for base_model in cls.__bases__: if not issubclass(base_model, GenericModel): # not a class that can be meaningfully parameterized continue elif not getattr(base_model, '__parameters__', None): # base_model is "GenericModel" (and has no __parameters__) # or # base_model is already concrete, and will be included transitively via cls. continue elif cls in _assigned_parameters: if base_model in _assigned_parameters: # cls is partially parameterised but not from base_model # e.g. cls = B[S], base_model = A[S] # B[S][int] should subclass A[int], (and will be transitively via B[int]) # but it's not viable to consistently subclass types with arbitrary construction # So don't attempt to include A[S][int] continue else: # base_model not in _assigned_parameters: # cls is partially parameterized, base_model is original generic # e.g. cls = B[str, T], base_model = B[S, T] # Need to determine the mapping for the base_model parameters mapped_types: Parametrization = { key: typevars_map.get(value, value) for key, value in _assigned_parameters[cls].items() } yield from build_base_model(base_model, mapped_types) else: # cls is base generic, so base_class has a distinct base # can construct the Parameterised base model using typevars_map directly yield from build_base_model(base_model, typevars_map) def replace_types(type_: Any, type_map: Mapping[Any, Any]) -> Any: """Return type with all occurrences of `type_map` keys recursively replaced with their values. :param type_: Any type, class or generic alias :param type_map: Mapping from `TypeVar` instance to concrete types. :return: New type representing the basic structure of `type_` with all `typevar_map` keys recursively replaced. >>> replace_types(Tuple[str, Union[List[str], float]], {str: int}) Tuple[int, Union[List[int], float]] """ if not type_map: return type_ type_args = get_args(type_) origin_type = get_origin(type_) if origin_type is Annotated: annotated_type, *annotations = type_args return Annotated[replace_types(annotated_type, type_map), tuple(annotations)] if (origin_type is ExtLiteral) or (sys.version_info >= (3, 8) and origin_type is Literal): return type_map.get(type_, type_) # Having type args is a good indicator that this is a typing module # class instantiation or a generic alias of some sort. if type_args: resolved_type_args = tuple(replace_types(arg, type_map) for arg in type_args) if all_identical(type_args, resolved_type_args): # If all arguments are the same, there is no need to modify the # type or create a new object at all return type_ if ( origin_type is not None and isinstance(type_, typing_base) and not isinstance(origin_type, typing_base) and getattr(type_, '_name', None) is not None ): # In python < 3.9 generic aliases don't exist so any of these like `list`, # `type` or `collections.abc.Callable` need to be translated. # See: https://www.python.org/dev/peps/pep-0585 origin_type = getattr(typing, type_._name) assert origin_type is not None # PEP-604 syntax (Ex.: list | str) is represented with a types.UnionType object that does not have __getitem__. # We also cannot use isinstance() since we have to compare types. if sys.version_info >= (3, 10) and origin_type is types.UnionType: # noqa: E721 return _UnionGenericAlias(origin_type, resolved_type_args) return origin_type[resolved_type_args] # We handle pydantic generic models separately as they don't have the same # semantics as "typing" classes or generic aliases if not origin_type and lenient_issubclass(type_, GenericModel) and not type_.__concrete__: type_args = type_.__parameters__ resolved_type_args = tuple(replace_types(t, type_map) for t in type_args) if all_identical(type_args, resolved_type_args): return type_ return type_[resolved_type_args] # Handle special case for typehints that can have lists as arguments. # `typing.Callable[[int, str], int]` is an example for this. if isinstance(type_, (List, list)): resolved_list = list(replace_types(element, type_map) for element in type_) if all_identical(type_, resolved_list): return type_ return resolved_list # For JsonWrapperValue, need to handle its inner type to allow correct parsing # of generic Json arguments like Json[T] if not origin_type and lenient_issubclass(type_, JsonWrapper): type_.inner_type = replace_types(type_.inner_type, type_map) return type_ # If all else fails, we try to resolve the type directly and otherwise just # return the input with no modifications. new_type = type_map.get(type_, type_) # Convert string to ForwardRef if isinstance(new_type, str): return ForwardRef(new_type) else: return new_type def check_parameters_count(cls: Type[GenericModel], parameters: Tuple[Any, ...]) -> None: actual = len(parameters) expected = len(cls.__parameters__) if actual != expected: description = 'many' if actual > expected else 'few' raise TypeError(f'Too {description} parameters for {cls.__name__}; actual {actual}, expected {expected}') DictValues: Type[Any] = {}.values().__class__ def iter_contained_typevars(v: Any) -> Iterator[TypeVarType]: """Recursively iterate through all subtypes and type args of `v` and yield any typevars that are found.""" if isinstance(v, TypeVar): yield v elif hasattr(v, '__parameters__') and not get_origin(v) and lenient_issubclass(v, GenericModel): yield from v.__parameters__ elif isinstance(v, (DictValues, list)): for var in v: yield from iter_contained_typevars(var) else: args = get_args(v) for arg in args: yield from iter_contained_typevars(arg) def get_caller_frame_info() -> Tuple[Optional[str], bool]: """ Used inside a function to check whether it was called globally Will only work against non-compiled code, therefore used only in pydantic.generics :returns Tuple[module_name, called_globally] """ try: previous_caller_frame = sys._getframe(2) except ValueError as e: raise RuntimeError('This function must be used inside another function') from e except AttributeError: # sys module does not have _getframe function, so there's nothing we can do about it return None, False frame_globals = previous_caller_frame.f_globals return frame_globals.get('__name__'), previous_caller_frame.f_locals is frame_globals def _prepare_model_fields( created_model: Type[GenericModel], fields: Mapping[str, Any], instance_type_hints: Mapping[str, type], typevars_map: Mapping[Any, type], ) -> None: """ Replace DeferredType fields with concrete type hints and prepare them. """ for key, field in created_model.__fields__.items(): if key not in fields: assert field.type_.__class__ is not DeferredType # https://github.com/nedbat/coveragepy/issues/198 continue # pragma: no cover assert field.type_.__class__ is DeferredType, field.type_.__class__ field_type_hint = instance_type_hints[key] concrete_type = replace_types(field_type_hint, typevars_map) field.type_ = concrete_type field.outer_type_ = concrete_type field.prepare() created_model.__annotations__[key] = concrete_type