AlkantarClanX12
Current Path : /opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/v1/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/v1/mypy.py |
import sys from configparser import ConfigParser from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union from mypy.errorcodes import ErrorCode from mypy.nodes import ( ARG_NAMED, ARG_NAMED_OPT, ARG_OPT, ARG_POS, ARG_STAR2, MDEF, Argument, AssignmentStmt, Block, CallExpr, ClassDef, Context, Decorator, EllipsisExpr, FuncBase, FuncDef, JsonDict, MemberExpr, NameExpr, PassStmt, PlaceholderNode, RefExpr, StrExpr, SymbolNode, SymbolTableNode, TempNode, TypeInfo, TypeVarExpr, Var, ) from mypy.options import Options from mypy.plugin import ( CheckerPluginInterface, ClassDefContext, FunctionContext, MethodContext, Plugin, ReportConfigContext, SemanticAnalyzerPluginInterface, ) from mypy.plugins import dataclasses from mypy.semanal import set_callable_name # type: ignore from mypy.server.trigger import make_wildcard_trigger from mypy.types import ( AnyType, CallableType, Instance, NoneType, Overloaded, ProperType, Type, TypeOfAny, TypeType, TypeVarType, UnionType, get_proper_type, ) from mypy.typevars import fill_typevars from mypy.util import get_unique_redefinition_name from mypy.version import __version__ as mypy_version from pydantic.utils import is_valid_field try: from mypy.types import TypeVarDef # type: ignore[attr-defined] except ImportError: # pragma: no cover # Backward-compatible with TypeVarDef from Mypy 0.910. from mypy.types import TypeVarType as TypeVarDef CONFIGFILE_KEY = 'pydantic-mypy' METADATA_KEY = 'pydantic-mypy-metadata' _NAMESPACE = __name__[:-5] # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel' BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings' MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass' FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field' DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass' def parse_mypy_version(version: str) -> Tuple[int, ...]: return tuple(map(int, version.partition('+')[0].split('.'))) MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version) BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__' # Increment version if plugin changes and mypy caches should be invalidated __version__ = 2 def plugin(version: str) -> 'TypingType[Plugin]': """ `version` is the mypy version string We might want to use this to print a warning if the mypy version being used is newer, or especially older, than we expect (or need). """ return PydanticPlugin class PydanticPlugin(Plugin): def __init__(self, options: Options) -> None: self.plugin_config = PydanticPluginConfig(options) self._plugin_data = self.plugin_config.to_data() super().__init__(options) def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]': sym = self.lookup_fully_qualified(fullname) if sym and isinstance(sym.node, TypeInfo): # pragma: no branch # No branching may occur if the mypy cache has not been cleared if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro): return self._pydantic_model_class_maker_callback return None def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: if fullname == MODEL_METACLASS_FULLNAME: return self._pydantic_model_metaclass_marker_callback return None def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]': sym = self.lookup_fully_qualified(fullname) if sym and sym.fullname == FIELD_FULLNAME: return self._pydantic_field_callback return None def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]: if fullname.endswith('.from_orm'): return from_orm_callback return None def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]: """Mark pydantic.dataclasses as dataclass. Mypy version 1.1.1 added support for `@dataclass_transform` decorator. """ if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1): return dataclasses.dataclass_class_maker_callback # type: ignore[return-value] return None def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]: """Return all plugin config data. Used by mypy to determine if cache needs to be discarded. """ return self._plugin_data def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None: transformer = PydanticModelTransformer(ctx, self.plugin_config) transformer.transform() def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None: """Reset dataclass_transform_spec attribute of ModelMetaclass. Let the plugin handle it. This behavior can be disabled if 'debug_dataclass_transform' is set to True', for testing purposes. """ if self.plugin_config.debug_dataclass_transform: return info_metaclass = ctx.cls.info.declared_metaclass assert info_metaclass, "callback not passed from 'get_metaclass_hook'" if getattr(info_metaclass.type, 'dataclass_transform_spec', None): info_metaclass.type.dataclass_transform_spec = None # type: ignore[attr-defined] def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type': """ Extract the type of the `default` argument from the Field function, and use it as the return type. In particular: * Check whether the default and default_factory argument is specified. * Output an error if both are specified. * Retrieve the type of the argument which is specified, and use it as return type for the function. """ default_any_type = ctx.default_return_type assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()' assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()' default_args = ctx.args[0] default_factory_args = ctx.args[1] if default_args and default_factory_args: error_default_and_default_factory_specified(ctx.api, ctx.context) return default_any_type if default_args: default_type = ctx.arg_types[0][0] default_arg = default_args[0] # Fallback to default Any type if the field is required if not isinstance(default_arg, EllipsisExpr): return default_type elif default_factory_args: default_factory_type = ctx.arg_types[1][0] # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter # Pydantic calls the default factory without any argument, so we retrieve the first item if isinstance(default_factory_type, Overloaded): if MYPY_VERSION_TUPLE > (0, 910): default_factory_type = default_factory_type.items[0] else: # Mypy0.910 exposes the items of overloaded types in a function default_factory_type = default_factory_type.items()[0] # type: ignore[operator] if isinstance(default_factory_type, CallableType): ret_type = default_factory_type.ret_type # mypy doesn't think `ret_type` has `args`, you'd think mypy should know, # add this check in case it varies by version args = getattr(ret_type, 'args', None) if args: if all(isinstance(arg, TypeVarType) for arg in args): # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any` ret_type.args = tuple(default_any_type for _ in args) # type: ignore[attr-defined] return ret_type return default_any_type class PydanticPluginConfig: __slots__ = ( 'init_forbid_extra', 'init_typed', 'warn_required_dynamic_aliases', 'warn_untyped_fields', 'debug_dataclass_transform', ) init_forbid_extra: bool init_typed: bool warn_required_dynamic_aliases: bool warn_untyped_fields: bool debug_dataclass_transform: bool # undocumented def __init__(self, options: Options) -> None: if options.config_file is None: # pragma: no cover return toml_config = parse_toml(options.config_file) if toml_config is not None: config = toml_config.get('tool', {}).get('pydantic-mypy', {}) for key in self.__slots__: setting = config.get(key, False) if not isinstance(setting, bool): raise ValueError(f'Configuration value must be a boolean for key: {key}') setattr(self, key, setting) else: plugin_config = ConfigParser() plugin_config.read(options.config_file) for key in self.__slots__: setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False) setattr(self, key, setting) def to_data(self) -> Dict[str, Any]: return {key: getattr(self, key) for key in self.__slots__} def from_orm_callback(ctx: MethodContext) -> Type: """ Raise an error if orm_mode is not enabled """ model_type: Instance ctx_type = ctx.type if isinstance(ctx_type, TypeType): ctx_type = ctx_type.item if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance): model_type = ctx_type.ret_type # called on the class elif isinstance(ctx_type, Instance): model_type = ctx_type # called on an instance (unusual, but still valid) else: # pragma: no cover detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})' error_unexpected_behavior(detail, ctx.api, ctx.context) return ctx.default_return_type pydantic_metadata = model_type.type.metadata.get(METADATA_KEY) if pydantic_metadata is None: return ctx.default_return_type orm_mode = pydantic_metadata.get('config', {}).get('orm_mode') if orm_mode is not True: error_from_orm(get_name(model_type.type), ctx.api, ctx.context) return ctx.default_return_type class PydanticModelTransformer: tracked_config_fields: Set[str] = { 'extra', 'allow_mutation', 'frozen', 'orm_mode', 'allow_population_by_field_name', 'alias_generator', } def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None: self._ctx = ctx self.plugin_config = plugin_config def transform(self) -> None: """ Configures the BaseModel subclass according to the plugin settings. In particular: * determines the model config and fields, * adds a fields-aware signature for the initializer and construct methods * freezes the class if allow_mutation = False or frozen = True * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses """ ctx = self._ctx info = ctx.cls.info self.adjust_validator_signatures() config = self.collect_config() fields = self.collect_fields(config) is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1]) self.add_initializer(fields, config, is_settings) self.add_construct_method(fields) self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True) info.metadata[METADATA_KEY] = { 'fields': {field.name: field.serialize() for field in fields}, 'config': config.set_values_dict(), } def adjust_validator_signatures(self) -> None: """When we decorate a function `f` with `pydantic.validator(...), mypy sees `f` as a regular method taking a `self` instance, even though pydantic internally wraps `f` with `classmethod` if necessary. Teach mypy this by marking any function whose outermost decorator is a `validator()` call as a classmethod. """ for name, sym in self._ctx.cls.info.names.items(): if isinstance(sym.node, Decorator): first_dec = sym.node.original_decorators[0] if ( isinstance(first_dec, CallExpr) and isinstance(first_dec.callee, NameExpr) and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator' ): sym.node.func.is_class = True def collect_config(self) -> 'ModelConfigData': """ Collects the values of the config attributes that are used by the plugin, accounting for parent classes. """ ctx = self._ctx cls = ctx.cls config = ModelConfigData() for stmt in cls.defs.body: if not isinstance(stmt, ClassDef): continue if stmt.name == 'Config': for substmt in stmt.defs.body: if not isinstance(substmt, AssignmentStmt): continue config.update(self.get_config_update(substmt)) if ( config.has_alias_generator and not config.allow_population_by_field_name and self.plugin_config.warn_required_dynamic_aliases ): error_required_dynamic_aliases(ctx.api, stmt) for info in cls.info.mro[1:]: # 0 is the current class if METADATA_KEY not in info.metadata: continue # Each class depends on the set of fields in its ancestors ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) for name, value in info.metadata[METADATA_KEY]['config'].items(): config.setdefault(name, value) return config def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']: """ Collects the fields for the model, accounting for parent classes """ # First, collect fields belonging to the current class. ctx = self._ctx cls = self._ctx.cls fields = [] # type: List[PydanticModelField] known_fields = set() # type: Set[str] for stmt in cls.defs.body: if not isinstance(stmt, AssignmentStmt): # `and stmt.new_syntax` to require annotation continue lhs = stmt.lvalues[0] if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name): continue if not stmt.new_syntax and self.plugin_config.warn_untyped_fields: error_untyped_fields(ctx.api, stmt) # if lhs.name == '__config__': # BaseConfig not well handled; I'm not sure why yet # continue sym = cls.info.names.get(lhs.name) if sym is None: # pragma: no cover # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation) # This is the same logic used in the dataclasses plugin continue node = sym.node if isinstance(node, PlaceholderNode): # pragma: no cover # See the PlaceholderNode docstring for more detail about how this can occur # Basically, it is an edge case when dealing with complex import logic # This is the same logic used in the dataclasses plugin continue if not isinstance(node, Var): # pragma: no cover # Don't know if this edge case still happens with the `is_valid_field` check above # but better safe than sorry continue # x: ClassVar[int] is ignored by dataclasses. if node.is_classvar: continue is_required = self.get_is_required(cls, stmt, lhs) alias, has_dynamic_alias = self.get_alias_info(stmt) if ( has_dynamic_alias and not model_config.allow_population_by_field_name and self.plugin_config.warn_required_dynamic_aliases ): error_required_dynamic_aliases(ctx.api, stmt) fields.append( PydanticModelField( name=lhs.name, is_required=is_required, alias=alias, has_dynamic_alias=has_dynamic_alias, line=stmt.line, column=stmt.column, ) ) known_fields.add(lhs.name) all_fields = fields.copy() for info in cls.info.mro[1:]: # 0 is the current class, -2 is BaseModel, -1 is object if METADATA_KEY not in info.metadata: continue superclass_fields = [] # Each class depends on the set of fields in its ancestors ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info))) for name, data in info.metadata[METADATA_KEY]['fields'].items(): if name not in known_fields: field = PydanticModelField.deserialize(info, data) known_fields.add(name) superclass_fields.append(field) else: (field,) = (a for a in all_fields if a.name == name) all_fields.remove(field) superclass_fields.append(field) all_fields = superclass_fields + all_fields return all_fields def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None: """ Adds a fields-aware `__init__` method to the class. The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings. """ ctx = self._ctx typed = self.plugin_config.init_typed use_alias = config.allow_population_by_field_name is not True force_all_optional = is_settings or bool( config.has_alias_generator and not config.allow_population_by_field_name ) init_arguments = self.get_field_arguments( fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias ) if not self.should_init_forbid_extra(fields, config): var = Var('kwargs') init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2)) if '__init__' not in ctx.cls.info.names: add_method(ctx, '__init__', init_arguments, NoneType()) def add_construct_method(self, fields: List['PydanticModelField']) -> None: """ Adds a fully typed `construct` classmethod to the class. Similar to the fields-aware __init__ method, but always uses the field names (not aliases), and does not treat settings fields as optional. """ ctx = self._ctx set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')]) optional_set_str = UnionType([set_str, NoneType()]) fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT) construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False) construct_arguments = [fields_set_argument] + construct_arguments obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object') self_tvar_name = '_PydanticBaseModel' # Make sure it does not conflict with other names in the class tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name if MYPY_VERSION_TUPLE >= (1, 4): tvd = TypeVarType( self_tvar_name, tvar_fullname, -1, [], obj_type, AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] ) self_tvar_expr = TypeVarExpr( self_tvar_name, tvar_fullname, [], obj_type, AnyType(TypeOfAny.from_omitted_generics), # type: ignore[arg-type] ) else: tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type) self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type) ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr) # Backward-compatible with TypeVarDef from Mypy 0.910. if isinstance(tvd, TypeVarType): self_type = tvd else: self_type = TypeVarType(tvd) add_method( ctx, 'construct', construct_arguments, return_type=self_type, self_type=self_type, tvar_def=tvd, is_classmethod=True, ) def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None: """ Marks all fields as properties so that attempts to set them trigger mypy errors. This is the same approach used by the attrs and dataclasses plugins. """ ctx = self._ctx info = ctx.cls.info for field in fields: sym_node = info.names.get(field.name) if sym_node is not None: var = sym_node.node if isinstance(var, Var): var.is_property = frozen elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration: # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage ctx.api.defer() else: # pragma: no cover # I don't know whether it's possible to hit this branch, but I've added it for safety try: var_str = str(var) except TypeError: # This happens for PlaceholderNode; perhaps it will happen for other types in the future.. var_str = repr(var) detail = f'sym_node.node: {var_str} (of type {var.__class__})' error_unexpected_behavior(detail, ctx.api, ctx.cls) else: var = field.to_var(info, use_alias=False) var.info = info var.is_property = frozen var._fullname = get_fullname(info) + '.' + get_name(var) info.names[get_name(var)] = SymbolTableNode(MDEF, var) def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']: """ Determines the config update due to a single statement in the Config class definition. Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int) """ lhs = substmt.lvalues[0] if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields): return None if lhs.name == 'extra': if isinstance(substmt.rvalue, StrExpr): forbid_extra = substmt.rvalue.value == 'forbid' elif isinstance(substmt.rvalue, MemberExpr): forbid_extra = substmt.rvalue.name == 'forbid' else: error_invalid_config_value(lhs.name, self._ctx.api, substmt) return None return ModelConfigData(forbid_extra=forbid_extra) if lhs.name == 'alias_generator': has_alias_generator = True if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None': has_alias_generator = False return ModelConfigData(has_alias_generator=has_alias_generator) if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'): return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'}) error_invalid_config_value(lhs.name, self._ctx.api, substmt) return None @staticmethod def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool: """ Returns a boolean indicating whether the field defined in `stmt` is a required field. """ expr = stmt.rvalue if isinstance(expr, TempNode): # TempNode means annotation-only, so only non-required if Optional value_type = get_proper_type(cls.info[lhs.name].type) return not PydanticModelTransformer.type_has_implicit_default(value_type) if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME: # The "default value" is a call to `Field`; at this point, the field is # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory # is specified. for arg, name in zip(expr.args, expr.arg_names): # If name is None, then this arg is the default because it is the only positional argument. if name is None or name == 'default': return arg.__class__ is EllipsisExpr if name == 'default_factory': return False # In this case, default and default_factory are not specified, so we need to look at the annotation value_type = get_proper_type(cls.info[lhs.name].type) return not PydanticModelTransformer.type_has_implicit_default(value_type) # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`) return isinstance(expr, EllipsisExpr) @staticmethod def type_has_implicit_default(type_: Optional[ProperType]) -> bool: """ Returns True if the passed type will be given an implicit default value. In pydantic v1, this is the case for Optional types and Any (with default value None). """ if isinstance(type_, AnyType): # Annotated as Any return True if isinstance(type_, UnionType) and any( isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items ): # Annotated as Optional, or otherwise having NoneType or AnyType in the union return True return False @staticmethod def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]: """ Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`. `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal. If `has_dynamic_alias` is True, `alias` will be None. """ expr = stmt.rvalue if isinstance(expr, TempNode): # TempNode means annotation-only return None, False if not ( isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME ): # Assigned value is not a call to pydantic.fields.Field return None, False for i, arg_name in enumerate(expr.arg_names): if arg_name != 'alias': continue arg = expr.args[i] if isinstance(arg, StrExpr): return arg.value, False else: return None, True return None, False def get_field_arguments( self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool ) -> List[Argument]: """ Helper function used during the construction of the `__init__` and `construct` method signatures. Returns a list of mypy Argument instances for use in the generated signatures. """ info = self._ctx.cls.info arguments = [ field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias) for field in fields if not (use_alias and field.has_dynamic_alias) ] return arguments def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool: """ Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to, *unless* a required dynamic alias is present (since then we can't determine a valid signature). """ if not config.allow_population_by_field_name: if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)): return False if config.forbid_extra: return True return self.plugin_config.init_forbid_extra @staticmethod def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool: """ Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be determined during static analysis. """ for field in fields: if field.has_dynamic_alias: return True if has_alias_generator: for field in fields: if field.alias is None: return True return False class PydanticModelField: def __init__( self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int ): self.name = name self.is_required = is_required self.alias = alias self.has_dynamic_alias = has_dynamic_alias self.line = line self.column = column def to_var(self, info: TypeInfo, use_alias: bool) -> Var: name = self.name if use_alias and self.alias is not None: name = self.alias return Var(name, info[self.name].type) def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument: if typed and info[self.name].type is not None: type_annotation = info[self.name].type else: type_annotation = AnyType(TypeOfAny.explicit) return Argument( variable=self.to_var(info, use_alias), type_annotation=type_annotation, initializer=None, kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED, ) def serialize(self) -> JsonDict: return self.__dict__ @classmethod def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField': return cls(**data) class ModelConfigData: def __init__( self, forbid_extra: Optional[bool] = None, allow_mutation: Optional[bool] = None, frozen: Optional[bool] = None, orm_mode: Optional[bool] = None, allow_population_by_field_name: Optional[bool] = None, has_alias_generator: Optional[bool] = None, ): self.forbid_extra = forbid_extra self.allow_mutation = allow_mutation self.frozen = frozen self.orm_mode = orm_mode self.allow_population_by_field_name = allow_population_by_field_name self.has_alias_generator = has_alias_generator def set_values_dict(self) -> Dict[str, Any]: return {k: v for k, v in self.__dict__.items() if v is not None} def update(self, config: Optional['ModelConfigData']) -> None: if config is None: return for k, v in config.set_values_dict().items(): setattr(self, k, v) def setdefault(self, key: str, value: Any) -> None: if getattr(self, key) is None: setattr(self, key, value) ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic') ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic') ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic') ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic') ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic') ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic') def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None: api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM) def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None: api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG) def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None: api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS) def error_unexpected_behavior( detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context ) -> None: # pragma: no cover # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path link = 'https://github.com/pydantic/pydantic/issues/new/choose' full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n' full_message += f'Please consider reporting this bug at {link} so we can try to fix it!' api.fail(full_message, context, code=ERROR_UNEXPECTED) def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None: api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED) def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None: api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS) def add_method( ctx: ClassDefContext, name: str, args: List[Argument], return_type: Type, self_type: Optional[Type] = None, tvar_def: Optional[TypeVarDef] = None, is_classmethod: bool = False, is_new: bool = False, # is_staticmethod: bool = False, ) -> None: """ Adds a new method to a class. This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged """ info = ctx.cls.info # First remove any previously generated methods with the same name # to avoid clashes and problems in the semantic analyzer. if name in info.names: sym = info.names[name] if sym.plugin_generated and isinstance(sym.node, FuncDef): ctx.cls.defs.body.remove(sym.node) # pragma: no cover self_type = self_type or fill_typevars(info) if is_classmethod or is_new: first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)] # elif is_staticmethod: # first = [] else: self_type = self_type or fill_typevars(info) first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)] args = first + args arg_types, arg_names, arg_kinds = [], [], [] for arg in args: assert arg.type_annotation, 'All arguments must be fully typed.' arg_types.append(arg.type_annotation) arg_names.append(get_name(arg.variable)) arg_kinds.append(arg.kind) function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function') signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type) if tvar_def: signature.variables = [tvar_def] func = FuncDef(name, args, Block([PassStmt()])) func.info = info func.type = set_callable_name(signature, func) func.is_class = is_classmethod # func.is_static = is_staticmethod func._fullname = get_fullname(info) + '.' + name func.line = info.line # NOTE: we would like the plugin generated node to dominate, but we still # need to keep any existing definitions so they get semantically analyzed. if name in info.names: # Get a nice unique name instead. r_name = get_unique_redefinition_name(name, info.names) info.names[r_name] = info.names[name] if is_classmethod: # or is_staticmethod: func.is_decorated = True v = Var(name, func.type) v.info = info v._fullname = func._fullname # if is_classmethod: v.is_classmethod = True dec = Decorator(func, [NameExpr('classmethod')], v) # else: # v.is_staticmethod = True # dec = Decorator(func, [NameExpr('staticmethod')], v) dec.line = info.line sym = SymbolTableNode(MDEF, dec) else: sym = SymbolTableNode(MDEF, func) sym.plugin_generated = True info.names[name] = sym info.defn.defs.body.append(func) def get_fullname(x: Union[FuncBase, SymbolNode]) -> str: """ Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. """ fn = x.fullname if callable(fn): # pragma: no cover return fn() return fn def get_name(x: Union[FuncBase, SymbolNode]) -> str: """ Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped. """ fn = x.name if callable(fn): # pragma: no cover return fn() return fn def parse_toml(config_file: str) -> Optional[Dict[str, Any]]: if not config_file.endswith('.toml'): return None read_mode = 'rb' if sys.version_info >= (3, 11): import tomllib as toml_ else: try: import tomli as toml_ except ImportError: # older versions of mypy have toml as a dependency, not tomli read_mode = 'r' try: import toml as toml_ # type: ignore[no-redef] except ImportError: # pragma: no cover import warnings warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.') return None with open(config_file, read_mode) as rf: return toml_.load(rf) # type: ignore[arg-type]