AlkantarClanX12

Your IP : 3.128.31.76


Current Path : /opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/v1/
Upload File :
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/pydantic/v1/mypy.py

import sys
from configparser import ConfigParser
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Type as TypingType, Union

from mypy.errorcodes import ErrorCode
from mypy.nodes import (
    ARG_NAMED,
    ARG_NAMED_OPT,
    ARG_OPT,
    ARG_POS,
    ARG_STAR2,
    MDEF,
    Argument,
    AssignmentStmt,
    Block,
    CallExpr,
    ClassDef,
    Context,
    Decorator,
    EllipsisExpr,
    FuncBase,
    FuncDef,
    JsonDict,
    MemberExpr,
    NameExpr,
    PassStmt,
    PlaceholderNode,
    RefExpr,
    StrExpr,
    SymbolNode,
    SymbolTableNode,
    TempNode,
    TypeInfo,
    TypeVarExpr,
    Var,
)
from mypy.options import Options
from mypy.plugin import (
    CheckerPluginInterface,
    ClassDefContext,
    FunctionContext,
    MethodContext,
    Plugin,
    ReportConfigContext,
    SemanticAnalyzerPluginInterface,
)
from mypy.plugins import dataclasses
from mypy.semanal import set_callable_name  # type: ignore
from mypy.server.trigger import make_wildcard_trigger
from mypy.types import (
    AnyType,
    CallableType,
    Instance,
    NoneType,
    Overloaded,
    ProperType,
    Type,
    TypeOfAny,
    TypeType,
    TypeVarType,
    UnionType,
    get_proper_type,
)
from mypy.typevars import fill_typevars
from mypy.util import get_unique_redefinition_name
from mypy.version import __version__ as mypy_version

from pydantic.utils import is_valid_field

try:
    from mypy.types import TypeVarDef  # type: ignore[attr-defined]
except ImportError:  # pragma: no cover
    # Backward-compatible with TypeVarDef from Mypy 0.910.
    from mypy.types import TypeVarType as TypeVarDef

CONFIGFILE_KEY = 'pydantic-mypy'
METADATA_KEY = 'pydantic-mypy-metadata'
_NAMESPACE = __name__[:-5]  # 'pydantic' in 1.10.X, 'pydantic.v1' in v2.X
BASEMODEL_FULLNAME = f'{_NAMESPACE}.main.BaseModel'
BASESETTINGS_FULLNAME = f'{_NAMESPACE}.env_settings.BaseSettings'
MODEL_METACLASS_FULLNAME = f'{_NAMESPACE}.main.ModelMetaclass'
FIELD_FULLNAME = f'{_NAMESPACE}.fields.Field'
DATACLASS_FULLNAME = f'{_NAMESPACE}.dataclasses.dataclass'


def parse_mypy_version(version: str) -> Tuple[int, ...]:
    return tuple(map(int, version.partition('+')[0].split('.')))


MYPY_VERSION_TUPLE = parse_mypy_version(mypy_version)
BUILTINS_NAME = 'builtins' if MYPY_VERSION_TUPLE >= (0, 930) else '__builtins__'

# Increment version if plugin changes and mypy caches should be invalidated
__version__ = 2


def plugin(version: str) -> 'TypingType[Plugin]':
    """
    `version` is the mypy version string

    We might want to use this to print a warning if the mypy version being used is
    newer, or especially older, than we expect (or need).
    """
    return PydanticPlugin


class PydanticPlugin(Plugin):
    def __init__(self, options: Options) -> None:
        self.plugin_config = PydanticPluginConfig(options)
        self._plugin_data = self.plugin_config.to_data()
        super().__init__(options)

    def get_base_class_hook(self, fullname: str) -> 'Optional[Callable[[ClassDefContext], None]]':
        sym = self.lookup_fully_qualified(fullname)
        if sym and isinstance(sym.node, TypeInfo):  # pragma: no branch
            # No branching may occur if the mypy cache has not been cleared
            if any(get_fullname(base) == BASEMODEL_FULLNAME for base in sym.node.mro):
                return self._pydantic_model_class_maker_callback
        return None

    def get_metaclass_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
        if fullname == MODEL_METACLASS_FULLNAME:
            return self._pydantic_model_metaclass_marker_callback
        return None

    def get_function_hook(self, fullname: str) -> 'Optional[Callable[[FunctionContext], Type]]':
        sym = self.lookup_fully_qualified(fullname)
        if sym and sym.fullname == FIELD_FULLNAME:
            return self._pydantic_field_callback
        return None

    def get_method_hook(self, fullname: str) -> Optional[Callable[[MethodContext], Type]]:
        if fullname.endswith('.from_orm'):
            return from_orm_callback
        return None

    def get_class_decorator_hook(self, fullname: str) -> Optional[Callable[[ClassDefContext], None]]:
        """Mark pydantic.dataclasses as dataclass.

        Mypy version 1.1.1 added support for `@dataclass_transform` decorator.
        """
        if fullname == DATACLASS_FULLNAME and MYPY_VERSION_TUPLE < (1, 1):
            return dataclasses.dataclass_class_maker_callback  # type: ignore[return-value]
        return None

    def report_config_data(self, ctx: ReportConfigContext) -> Dict[str, Any]:
        """Return all plugin config data.

        Used by mypy to determine if cache needs to be discarded.
        """
        return self._plugin_data

    def _pydantic_model_class_maker_callback(self, ctx: ClassDefContext) -> None:
        transformer = PydanticModelTransformer(ctx, self.plugin_config)
        transformer.transform()

    def _pydantic_model_metaclass_marker_callback(self, ctx: ClassDefContext) -> None:
        """Reset dataclass_transform_spec attribute of ModelMetaclass.

        Let the plugin handle it. This behavior can be disabled
        if 'debug_dataclass_transform' is set to True', for testing purposes.
        """
        if self.plugin_config.debug_dataclass_transform:
            return
        info_metaclass = ctx.cls.info.declared_metaclass
        assert info_metaclass, "callback not passed from 'get_metaclass_hook'"
        if getattr(info_metaclass.type, 'dataclass_transform_spec', None):
            info_metaclass.type.dataclass_transform_spec = None  # type: ignore[attr-defined]

    def _pydantic_field_callback(self, ctx: FunctionContext) -> 'Type':
        """
        Extract the type of the `default` argument from the Field function, and use it as the return type.

        In particular:
        * Check whether the default and default_factory argument is specified.
        * Output an error if both are specified.
        * Retrieve the type of the argument which is specified, and use it as return type for the function.
        """
        default_any_type = ctx.default_return_type

        assert ctx.callee_arg_names[0] == 'default', '"default" is no longer first argument in Field()'
        assert ctx.callee_arg_names[1] == 'default_factory', '"default_factory" is no longer second argument in Field()'
        default_args = ctx.args[0]
        default_factory_args = ctx.args[1]

        if default_args and default_factory_args:
            error_default_and_default_factory_specified(ctx.api, ctx.context)
            return default_any_type

        if default_args:
            default_type = ctx.arg_types[0][0]
            default_arg = default_args[0]

            # Fallback to default Any type if the field is required
            if not isinstance(default_arg, EllipsisExpr):
                return default_type

        elif default_factory_args:
            default_factory_type = ctx.arg_types[1][0]

            # Functions which use `ParamSpec` can be overloaded, exposing the callable's types as a parameter
            # Pydantic calls the default factory without any argument, so we retrieve the first item
            if isinstance(default_factory_type, Overloaded):
                if MYPY_VERSION_TUPLE > (0, 910):
                    default_factory_type = default_factory_type.items[0]
                else:
                    # Mypy0.910 exposes the items of overloaded types in a function
                    default_factory_type = default_factory_type.items()[0]  # type: ignore[operator]

            if isinstance(default_factory_type, CallableType):
                ret_type = default_factory_type.ret_type
                # mypy doesn't think `ret_type` has `args`, you'd think mypy should know,
                # add this check in case it varies by version
                args = getattr(ret_type, 'args', None)
                if args:
                    if all(isinstance(arg, TypeVarType) for arg in args):
                        # Looks like the default factory is a type like `list` or `dict`, replace all args with `Any`
                        ret_type.args = tuple(default_any_type for _ in args)  # type: ignore[attr-defined]
                return ret_type

        return default_any_type


class PydanticPluginConfig:
    __slots__ = (
        'init_forbid_extra',
        'init_typed',
        'warn_required_dynamic_aliases',
        'warn_untyped_fields',
        'debug_dataclass_transform',
    )
    init_forbid_extra: bool
    init_typed: bool
    warn_required_dynamic_aliases: bool
    warn_untyped_fields: bool
    debug_dataclass_transform: bool  # undocumented

    def __init__(self, options: Options) -> None:
        if options.config_file is None:  # pragma: no cover
            return

        toml_config = parse_toml(options.config_file)
        if toml_config is not None:
            config = toml_config.get('tool', {}).get('pydantic-mypy', {})
            for key in self.__slots__:
                setting = config.get(key, False)
                if not isinstance(setting, bool):
                    raise ValueError(f'Configuration value must be a boolean for key: {key}')
                setattr(self, key, setting)
        else:
            plugin_config = ConfigParser()
            plugin_config.read(options.config_file)
            for key in self.__slots__:
                setting = plugin_config.getboolean(CONFIGFILE_KEY, key, fallback=False)
                setattr(self, key, setting)

    def to_data(self) -> Dict[str, Any]:
        return {key: getattr(self, key) for key in self.__slots__}


def from_orm_callback(ctx: MethodContext) -> Type:
    """
    Raise an error if orm_mode is not enabled
    """
    model_type: Instance
    ctx_type = ctx.type
    if isinstance(ctx_type, TypeType):
        ctx_type = ctx_type.item
    if isinstance(ctx_type, CallableType) and isinstance(ctx_type.ret_type, Instance):
        model_type = ctx_type.ret_type  # called on the class
    elif isinstance(ctx_type, Instance):
        model_type = ctx_type  # called on an instance (unusual, but still valid)
    else:  # pragma: no cover
        detail = f'ctx.type: {ctx_type} (of type {ctx_type.__class__.__name__})'
        error_unexpected_behavior(detail, ctx.api, ctx.context)
        return ctx.default_return_type
    pydantic_metadata = model_type.type.metadata.get(METADATA_KEY)
    if pydantic_metadata is None:
        return ctx.default_return_type
    orm_mode = pydantic_metadata.get('config', {}).get('orm_mode')
    if orm_mode is not True:
        error_from_orm(get_name(model_type.type), ctx.api, ctx.context)
    return ctx.default_return_type


class PydanticModelTransformer:
    tracked_config_fields: Set[str] = {
        'extra',
        'allow_mutation',
        'frozen',
        'orm_mode',
        'allow_population_by_field_name',
        'alias_generator',
    }

    def __init__(self, ctx: ClassDefContext, plugin_config: PydanticPluginConfig) -> None:
        self._ctx = ctx
        self.plugin_config = plugin_config

    def transform(self) -> None:
        """
        Configures the BaseModel subclass according to the plugin settings.

        In particular:
        * determines the model config and fields,
        * adds a fields-aware signature for the initializer and construct methods
        * freezes the class if allow_mutation = False or frozen = True
        * stores the fields, config, and if the class is settings in the mypy metadata for access by subclasses
        """
        ctx = self._ctx
        info = ctx.cls.info

        self.adjust_validator_signatures()
        config = self.collect_config()
        fields = self.collect_fields(config)
        is_settings = any(get_fullname(base) == BASESETTINGS_FULLNAME for base in info.mro[:-1])
        self.add_initializer(fields, config, is_settings)
        self.add_construct_method(fields)
        self.set_frozen(fields, frozen=config.allow_mutation is False or config.frozen is True)
        info.metadata[METADATA_KEY] = {
            'fields': {field.name: field.serialize() for field in fields},
            'config': config.set_values_dict(),
        }

    def adjust_validator_signatures(self) -> None:
        """When we decorate a function `f` with `pydantic.validator(...), mypy sees
        `f` as a regular method taking a `self` instance, even though pydantic
        internally wraps `f` with `classmethod` if necessary.

        Teach mypy this by marking any function whose outermost decorator is a
        `validator()` call as a classmethod.
        """
        for name, sym in self._ctx.cls.info.names.items():
            if isinstance(sym.node, Decorator):
                first_dec = sym.node.original_decorators[0]
                if (
                    isinstance(first_dec, CallExpr)
                    and isinstance(first_dec.callee, NameExpr)
                    and first_dec.callee.fullname == f'{_NAMESPACE}.class_validators.validator'
                ):
                    sym.node.func.is_class = True

    def collect_config(self) -> 'ModelConfigData':
        """
        Collects the values of the config attributes that are used by the plugin, accounting for parent classes.
        """
        ctx = self._ctx
        cls = ctx.cls
        config = ModelConfigData()
        for stmt in cls.defs.body:
            if not isinstance(stmt, ClassDef):
                continue
            if stmt.name == 'Config':
                for substmt in stmt.defs.body:
                    if not isinstance(substmt, AssignmentStmt):
                        continue
                    config.update(self.get_config_update(substmt))
                if (
                    config.has_alias_generator
                    and not config.allow_population_by_field_name
                    and self.plugin_config.warn_required_dynamic_aliases
                ):
                    error_required_dynamic_aliases(ctx.api, stmt)
        for info in cls.info.mro[1:]:  # 0 is the current class
            if METADATA_KEY not in info.metadata:
                continue

            # Each class depends on the set of fields in its ancestors
            ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))
            for name, value in info.metadata[METADATA_KEY]['config'].items():
                config.setdefault(name, value)
        return config

    def collect_fields(self, model_config: 'ModelConfigData') -> List['PydanticModelField']:
        """
        Collects the fields for the model, accounting for parent classes
        """
        # First, collect fields belonging to the current class.
        ctx = self._ctx
        cls = self._ctx.cls
        fields = []  # type: List[PydanticModelField]
        known_fields = set()  # type: Set[str]
        for stmt in cls.defs.body:
            if not isinstance(stmt, AssignmentStmt):  # `and stmt.new_syntax` to require annotation
                continue

            lhs = stmt.lvalues[0]
            if not isinstance(lhs, NameExpr) or not is_valid_field(lhs.name):
                continue

            if not stmt.new_syntax and self.plugin_config.warn_untyped_fields:
                error_untyped_fields(ctx.api, stmt)

            # if lhs.name == '__config__':  # BaseConfig not well handled; I'm not sure why yet
            #     continue

            sym = cls.info.names.get(lhs.name)
            if sym is None:  # pragma: no cover
                # This is likely due to a star import (see the dataclasses plugin for a more detailed explanation)
                # This is the same logic used in the dataclasses plugin
                continue

            node = sym.node
            if isinstance(node, PlaceholderNode):  # pragma: no cover
                # See the PlaceholderNode docstring for more detail about how this can occur
                # Basically, it is an edge case when dealing with complex import logic
                # This is the same logic used in the dataclasses plugin
                continue
            if not isinstance(node, Var):  # pragma: no cover
                # Don't know if this edge case still happens with the `is_valid_field` check above
                # but better safe than sorry
                continue

            # x: ClassVar[int] is ignored by dataclasses.
            if node.is_classvar:
                continue

            is_required = self.get_is_required(cls, stmt, lhs)
            alias, has_dynamic_alias = self.get_alias_info(stmt)
            if (
                has_dynamic_alias
                and not model_config.allow_population_by_field_name
                and self.plugin_config.warn_required_dynamic_aliases
            ):
                error_required_dynamic_aliases(ctx.api, stmt)
            fields.append(
                PydanticModelField(
                    name=lhs.name,
                    is_required=is_required,
                    alias=alias,
                    has_dynamic_alias=has_dynamic_alias,
                    line=stmt.line,
                    column=stmt.column,
                )
            )
            known_fields.add(lhs.name)
        all_fields = fields.copy()
        for info in cls.info.mro[1:]:  # 0 is the current class, -2 is BaseModel, -1 is object
            if METADATA_KEY not in info.metadata:
                continue

            superclass_fields = []
            # Each class depends on the set of fields in its ancestors
            ctx.api.add_plugin_dependency(make_wildcard_trigger(get_fullname(info)))

            for name, data in info.metadata[METADATA_KEY]['fields'].items():
                if name not in known_fields:
                    field = PydanticModelField.deserialize(info, data)
                    known_fields.add(name)
                    superclass_fields.append(field)
                else:
                    (field,) = (a for a in all_fields if a.name == name)
                    all_fields.remove(field)
                    superclass_fields.append(field)
            all_fields = superclass_fields + all_fields
        return all_fields

    def add_initializer(self, fields: List['PydanticModelField'], config: 'ModelConfigData', is_settings: bool) -> None:
        """
        Adds a fields-aware `__init__` method to the class.

        The added `__init__` will be annotated with types vs. all `Any` depending on the plugin settings.
        """
        ctx = self._ctx
        typed = self.plugin_config.init_typed
        use_alias = config.allow_population_by_field_name is not True
        force_all_optional = is_settings or bool(
            config.has_alias_generator and not config.allow_population_by_field_name
        )
        init_arguments = self.get_field_arguments(
            fields, typed=typed, force_all_optional=force_all_optional, use_alias=use_alias
        )
        if not self.should_init_forbid_extra(fields, config):
            var = Var('kwargs')
            init_arguments.append(Argument(var, AnyType(TypeOfAny.explicit), None, ARG_STAR2))

        if '__init__' not in ctx.cls.info.names:
            add_method(ctx, '__init__', init_arguments, NoneType())

    def add_construct_method(self, fields: List['PydanticModelField']) -> None:
        """
        Adds a fully typed `construct` classmethod to the class.

        Similar to the fields-aware __init__ method, but always uses the field names (not aliases),
        and does not treat settings fields as optional.
        """
        ctx = self._ctx
        set_str = ctx.api.named_type(f'{BUILTINS_NAME}.set', [ctx.api.named_type(f'{BUILTINS_NAME}.str')])
        optional_set_str = UnionType([set_str, NoneType()])
        fields_set_argument = Argument(Var('_fields_set', optional_set_str), optional_set_str, None, ARG_OPT)
        construct_arguments = self.get_field_arguments(fields, typed=True, force_all_optional=False, use_alias=False)
        construct_arguments = [fields_set_argument] + construct_arguments

        obj_type = ctx.api.named_type(f'{BUILTINS_NAME}.object')
        self_tvar_name = '_PydanticBaseModel'  # Make sure it does not conflict with other names in the class
        tvar_fullname = ctx.cls.fullname + '.' + self_tvar_name
        if MYPY_VERSION_TUPLE >= (1, 4):
            tvd = TypeVarType(
                self_tvar_name,
                tvar_fullname,
                -1,
                [],
                obj_type,
                AnyType(TypeOfAny.from_omitted_generics),  # type: ignore[arg-type]
            )
            self_tvar_expr = TypeVarExpr(
                self_tvar_name,
                tvar_fullname,
                [],
                obj_type,
                AnyType(TypeOfAny.from_omitted_generics),  # type: ignore[arg-type]
            )
        else:
            tvd = TypeVarDef(self_tvar_name, tvar_fullname, -1, [], obj_type)
            self_tvar_expr = TypeVarExpr(self_tvar_name, tvar_fullname, [], obj_type)
        ctx.cls.info.names[self_tvar_name] = SymbolTableNode(MDEF, self_tvar_expr)

        # Backward-compatible with TypeVarDef from Mypy 0.910.
        if isinstance(tvd, TypeVarType):
            self_type = tvd
        else:
            self_type = TypeVarType(tvd)

        add_method(
            ctx,
            'construct',
            construct_arguments,
            return_type=self_type,
            self_type=self_type,
            tvar_def=tvd,
            is_classmethod=True,
        )

    def set_frozen(self, fields: List['PydanticModelField'], frozen: bool) -> None:
        """
        Marks all fields as properties so that attempts to set them trigger mypy errors.

        This is the same approach used by the attrs and dataclasses plugins.
        """
        ctx = self._ctx
        info = ctx.cls.info
        for field in fields:
            sym_node = info.names.get(field.name)
            if sym_node is not None:
                var = sym_node.node
                if isinstance(var, Var):
                    var.is_property = frozen
                elif isinstance(var, PlaceholderNode) and not ctx.api.final_iteration:
                    # See https://github.com/pydantic/pydantic/issues/5191 to hit this branch for test coverage
                    ctx.api.defer()
                else:  # pragma: no cover
                    # I don't know whether it's possible to hit this branch, but I've added it for safety
                    try:
                        var_str = str(var)
                    except TypeError:
                        # This happens for PlaceholderNode; perhaps it will happen for other types in the future..
                        var_str = repr(var)
                    detail = f'sym_node.node: {var_str} (of type {var.__class__})'
                    error_unexpected_behavior(detail, ctx.api, ctx.cls)
            else:
                var = field.to_var(info, use_alias=False)
                var.info = info
                var.is_property = frozen
                var._fullname = get_fullname(info) + '.' + get_name(var)
                info.names[get_name(var)] = SymbolTableNode(MDEF, var)

    def get_config_update(self, substmt: AssignmentStmt) -> Optional['ModelConfigData']:
        """
        Determines the config update due to a single statement in the Config class definition.

        Warns if a tracked config attribute is set to a value the plugin doesn't know how to interpret (e.g., an int)
        """
        lhs = substmt.lvalues[0]
        if not (isinstance(lhs, NameExpr) and lhs.name in self.tracked_config_fields):
            return None
        if lhs.name == 'extra':
            if isinstance(substmt.rvalue, StrExpr):
                forbid_extra = substmt.rvalue.value == 'forbid'
            elif isinstance(substmt.rvalue, MemberExpr):
                forbid_extra = substmt.rvalue.name == 'forbid'
            else:
                error_invalid_config_value(lhs.name, self._ctx.api, substmt)
                return None
            return ModelConfigData(forbid_extra=forbid_extra)
        if lhs.name == 'alias_generator':
            has_alias_generator = True
            if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname == 'builtins.None':
                has_alias_generator = False
            return ModelConfigData(has_alias_generator=has_alias_generator)
        if isinstance(substmt.rvalue, NameExpr) and substmt.rvalue.fullname in ('builtins.True', 'builtins.False'):
            return ModelConfigData(**{lhs.name: substmt.rvalue.fullname == 'builtins.True'})
        error_invalid_config_value(lhs.name, self._ctx.api, substmt)
        return None

    @staticmethod
    def get_is_required(cls: ClassDef, stmt: AssignmentStmt, lhs: NameExpr) -> bool:
        """
        Returns a boolean indicating whether the field defined in `stmt` is a required field.
        """
        expr = stmt.rvalue
        if isinstance(expr, TempNode):
            # TempNode means annotation-only, so only non-required if Optional
            value_type = get_proper_type(cls.info[lhs.name].type)
            return not PydanticModelTransformer.type_has_implicit_default(value_type)
        if isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME:
            # The "default value" is a call to `Field`; at this point, the field is
            # only required if default is Ellipsis (i.e., `field_name: Annotation = Field(...)`) or if default_factory
            # is specified.
            for arg, name in zip(expr.args, expr.arg_names):
                # If name is None, then this arg is the default because it is the only positional argument.
                if name is None or name == 'default':
                    return arg.__class__ is EllipsisExpr
                if name == 'default_factory':
                    return False
            # In this case, default and default_factory are not specified, so we need to look at the annotation
            value_type = get_proper_type(cls.info[lhs.name].type)
            return not PydanticModelTransformer.type_has_implicit_default(value_type)
        # Only required if the "default value" is Ellipsis (i.e., `field_name: Annotation = ...`)
        return isinstance(expr, EllipsisExpr)

    @staticmethod
    def type_has_implicit_default(type_: Optional[ProperType]) -> bool:
        """
        Returns True if the passed type will be given an implicit default value.

        In pydantic v1, this is the case for Optional types and Any (with default value None).
        """
        if isinstance(type_, AnyType):
            # Annotated as Any
            return True
        if isinstance(type_, UnionType) and any(
            isinstance(item, NoneType) or isinstance(item, AnyType) for item in type_.items
        ):
            # Annotated as Optional, or otherwise having NoneType or AnyType in the union
            return True
        return False

    @staticmethod
    def get_alias_info(stmt: AssignmentStmt) -> Tuple[Optional[str], bool]:
        """
        Returns a pair (alias, has_dynamic_alias), extracted from the declaration of the field defined in `stmt`.

        `has_dynamic_alias` is True if and only if an alias is provided, but not as a string literal.
        If `has_dynamic_alias` is True, `alias` will be None.
        """
        expr = stmt.rvalue
        if isinstance(expr, TempNode):
            # TempNode means annotation-only
            return None, False

        if not (
            isinstance(expr, CallExpr) and isinstance(expr.callee, RefExpr) and expr.callee.fullname == FIELD_FULLNAME
        ):
            # Assigned value is not a call to pydantic.fields.Field
            return None, False

        for i, arg_name in enumerate(expr.arg_names):
            if arg_name != 'alias':
                continue
            arg = expr.args[i]
            if isinstance(arg, StrExpr):
                return arg.value, False
            else:
                return None, True
        return None, False

    def get_field_arguments(
        self, fields: List['PydanticModelField'], typed: bool, force_all_optional: bool, use_alias: bool
    ) -> List[Argument]:
        """
        Helper function used during the construction of the `__init__` and `construct` method signatures.

        Returns a list of mypy Argument instances for use in the generated signatures.
        """
        info = self._ctx.cls.info
        arguments = [
            field.to_argument(info, typed=typed, force_optional=force_all_optional, use_alias=use_alias)
            for field in fields
            if not (use_alias and field.has_dynamic_alias)
        ]
        return arguments

    def should_init_forbid_extra(self, fields: List['PydanticModelField'], config: 'ModelConfigData') -> bool:
        """
        Indicates whether the generated `__init__` should get a `**kwargs` at the end of its signature

        We disallow arbitrary kwargs if the extra config setting is "forbid", or if the plugin config says to,
        *unless* a required dynamic alias is present (since then we can't determine a valid signature).
        """
        if not config.allow_population_by_field_name:
            if self.is_dynamic_alias_present(fields, bool(config.has_alias_generator)):
                return False
        if config.forbid_extra:
            return True
        return self.plugin_config.init_forbid_extra

    @staticmethod
    def is_dynamic_alias_present(fields: List['PydanticModelField'], has_alias_generator: bool) -> bool:
        """
        Returns whether any fields on the model have a "dynamic alias", i.e., an alias that cannot be
        determined during static analysis.
        """
        for field in fields:
            if field.has_dynamic_alias:
                return True
        if has_alias_generator:
            for field in fields:
                if field.alias is None:
                    return True
        return False


class PydanticModelField:
    def __init__(
        self, name: str, is_required: bool, alias: Optional[str], has_dynamic_alias: bool, line: int, column: int
    ):
        self.name = name
        self.is_required = is_required
        self.alias = alias
        self.has_dynamic_alias = has_dynamic_alias
        self.line = line
        self.column = column

    def to_var(self, info: TypeInfo, use_alias: bool) -> Var:
        name = self.name
        if use_alias and self.alias is not None:
            name = self.alias
        return Var(name, info[self.name].type)

    def to_argument(self, info: TypeInfo, typed: bool, force_optional: bool, use_alias: bool) -> Argument:
        if typed and info[self.name].type is not None:
            type_annotation = info[self.name].type
        else:
            type_annotation = AnyType(TypeOfAny.explicit)
        return Argument(
            variable=self.to_var(info, use_alias),
            type_annotation=type_annotation,
            initializer=None,
            kind=ARG_NAMED_OPT if force_optional or not self.is_required else ARG_NAMED,
        )

    def serialize(self) -> JsonDict:
        return self.__dict__

    @classmethod
    def deserialize(cls, info: TypeInfo, data: JsonDict) -> 'PydanticModelField':
        return cls(**data)


class ModelConfigData:
    def __init__(
        self,
        forbid_extra: Optional[bool] = None,
        allow_mutation: Optional[bool] = None,
        frozen: Optional[bool] = None,
        orm_mode: Optional[bool] = None,
        allow_population_by_field_name: Optional[bool] = None,
        has_alias_generator: Optional[bool] = None,
    ):
        self.forbid_extra = forbid_extra
        self.allow_mutation = allow_mutation
        self.frozen = frozen
        self.orm_mode = orm_mode
        self.allow_population_by_field_name = allow_population_by_field_name
        self.has_alias_generator = has_alias_generator

    def set_values_dict(self) -> Dict[str, Any]:
        return {k: v for k, v in self.__dict__.items() if v is not None}

    def update(self, config: Optional['ModelConfigData']) -> None:
        if config is None:
            return
        for k, v in config.set_values_dict().items():
            setattr(self, k, v)

    def setdefault(self, key: str, value: Any) -> None:
        if getattr(self, key) is None:
            setattr(self, key, value)


ERROR_ORM = ErrorCode('pydantic-orm', 'Invalid from_orm call', 'Pydantic')
ERROR_CONFIG = ErrorCode('pydantic-config', 'Invalid config value', 'Pydantic')
ERROR_ALIAS = ErrorCode('pydantic-alias', 'Dynamic alias disallowed', 'Pydantic')
ERROR_UNEXPECTED = ErrorCode('pydantic-unexpected', 'Unexpected behavior', 'Pydantic')
ERROR_UNTYPED = ErrorCode('pydantic-field', 'Untyped field disallowed', 'Pydantic')
ERROR_FIELD_DEFAULTS = ErrorCode('pydantic-field', 'Invalid Field defaults', 'Pydantic')


def error_from_orm(model_name: str, api: CheckerPluginInterface, context: Context) -> None:
    api.fail(f'"{model_name}" does not have orm_mode=True', context, code=ERROR_ORM)


def error_invalid_config_value(name: str, api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    api.fail(f'Invalid value for "Config.{name}"', context, code=ERROR_CONFIG)


def error_required_dynamic_aliases(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    api.fail('Required dynamic aliases disallowed', context, code=ERROR_ALIAS)


def error_unexpected_behavior(
    detail: str, api: Union[CheckerPluginInterface, SemanticAnalyzerPluginInterface], context: Context
) -> None:  # pragma: no cover
    # Can't think of a good way to test this, but I confirmed it renders as desired by adding to a non-error path
    link = 'https://github.com/pydantic/pydantic/issues/new/choose'
    full_message = f'The pydantic mypy plugin ran into unexpected behavior: {detail}\n'
    full_message += f'Please consider reporting this bug at {link} so we can try to fix it!'
    api.fail(full_message, context, code=ERROR_UNEXPECTED)


def error_untyped_fields(api: SemanticAnalyzerPluginInterface, context: Context) -> None:
    api.fail('Untyped fields disallowed', context, code=ERROR_UNTYPED)


def error_default_and_default_factory_specified(api: CheckerPluginInterface, context: Context) -> None:
    api.fail('Field default and default_factory cannot be specified together', context, code=ERROR_FIELD_DEFAULTS)


def add_method(
    ctx: ClassDefContext,
    name: str,
    args: List[Argument],
    return_type: Type,
    self_type: Optional[Type] = None,
    tvar_def: Optional[TypeVarDef] = None,
    is_classmethod: bool = False,
    is_new: bool = False,
    # is_staticmethod: bool = False,
) -> None:
    """
    Adds a new method to a class.

    This can be dropped if/when https://github.com/python/mypy/issues/7301 is merged
    """
    info = ctx.cls.info

    # First remove any previously generated methods with the same name
    # to avoid clashes and problems in the semantic analyzer.
    if name in info.names:
        sym = info.names[name]
        if sym.plugin_generated and isinstance(sym.node, FuncDef):
            ctx.cls.defs.body.remove(sym.node)  # pragma: no cover

    self_type = self_type or fill_typevars(info)
    if is_classmethod or is_new:
        first = [Argument(Var('_cls'), TypeType.make_normalized(self_type), None, ARG_POS)]
    # elif is_staticmethod:
    #     first = []
    else:
        self_type = self_type or fill_typevars(info)
        first = [Argument(Var('__pydantic_self__'), self_type, None, ARG_POS)]
    args = first + args
    arg_types, arg_names, arg_kinds = [], [], []
    for arg in args:
        assert arg.type_annotation, 'All arguments must be fully typed.'
        arg_types.append(arg.type_annotation)
        arg_names.append(get_name(arg.variable))
        arg_kinds.append(arg.kind)

    function_type = ctx.api.named_type(f'{BUILTINS_NAME}.function')
    signature = CallableType(arg_types, arg_kinds, arg_names, return_type, function_type)
    if tvar_def:
        signature.variables = [tvar_def]

    func = FuncDef(name, args, Block([PassStmt()]))
    func.info = info
    func.type = set_callable_name(signature, func)
    func.is_class = is_classmethod
    # func.is_static = is_staticmethod
    func._fullname = get_fullname(info) + '.' + name
    func.line = info.line

    # NOTE: we would like the plugin generated node to dominate, but we still
    # need to keep any existing definitions so they get semantically analyzed.
    if name in info.names:
        # Get a nice unique name instead.
        r_name = get_unique_redefinition_name(name, info.names)
        info.names[r_name] = info.names[name]

    if is_classmethod:  # or is_staticmethod:
        func.is_decorated = True
        v = Var(name, func.type)
        v.info = info
        v._fullname = func._fullname
        # if is_classmethod:
        v.is_classmethod = True
        dec = Decorator(func, [NameExpr('classmethod')], v)
        # else:
        #     v.is_staticmethod = True
        #     dec = Decorator(func, [NameExpr('staticmethod')], v)

        dec.line = info.line
        sym = SymbolTableNode(MDEF, dec)
    else:
        sym = SymbolTableNode(MDEF, func)
    sym.plugin_generated = True

    info.names[name] = sym
    info.defn.defs.body.append(func)


def get_fullname(x: Union[FuncBase, SymbolNode]) -> str:
    """
    Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
    """
    fn = x.fullname
    if callable(fn):  # pragma: no cover
        return fn()
    return fn


def get_name(x: Union[FuncBase, SymbolNode]) -> str:
    """
    Used for compatibility with mypy 0.740; can be dropped once support for 0.740 is dropped.
    """
    fn = x.name
    if callable(fn):  # pragma: no cover
        return fn()
    return fn


def parse_toml(config_file: str) -> Optional[Dict[str, Any]]:
    if not config_file.endswith('.toml'):
        return None

    read_mode = 'rb'
    if sys.version_info >= (3, 11):
        import tomllib as toml_
    else:
        try:
            import tomli as toml_
        except ImportError:
            # older versions of mypy have toml as a dependency, not tomli
            read_mode = 'r'
            try:
                import toml as toml_  # type: ignore[no-redef]
            except ImportError:  # pragma: no cover
                import warnings

                warnings.warn('No TOML parser installed, cannot read configuration from `pyproject.toml`.')
                return None

    with open(config_file, read_mode) as rf:
        return toml_.load(rf)  # type: ignore[arg-type]