AlkantarClanX12
Current Path : /opt/cloudlinux/venv/lib/python3.11/site-packages/prometheus_client/ |
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/prometheus_client/metrics.py |
import sys from threading import Lock import time import types from . import values # retain this import style for testability from .context_managers import ExceptionCounter, InprogressTracker, Timer from .metrics_core import ( Metric, METRIC_LABEL_NAME_RE, METRIC_NAME_RE, RESERVED_METRIC_LABEL_NAME_RE, ) from .registry import REGISTRY from .utils import floatToGoString, INF if sys.version_info > (3,): unicode = str create_bound_method = types.MethodType else: def create_bound_method(func, obj): return types.MethodType(func, obj, obj.__class__) def _build_full_name(metric_type, name, namespace, subsystem, unit): full_name = '' if namespace: full_name += namespace + '_' if subsystem: full_name += subsystem + '_' full_name += name if metric_type == 'counter' and full_name.endswith('_total'): full_name = full_name[:-6] # Munge to OpenMetrics. if unit and not full_name.endswith("_" + unit): full_name += "_" + unit if unit and metric_type in ('info', 'stateset'): raise ValueError('Metric name is of a type that cannot have a unit: ' + full_name) return full_name def _validate_labelnames(cls, labelnames): labelnames = tuple(labelnames) for l in labelnames: if not METRIC_LABEL_NAME_RE.match(l): raise ValueError('Invalid label metric name: ' + l) if RESERVED_METRIC_LABEL_NAME_RE.match(l): raise ValueError('Reserved label metric name: ' + l) if l in cls._reserved_labelnames: raise ValueError('Reserved label metric name: ' + l) return labelnames class MetricWrapperBase(object): _type = None _reserved_labelnames = () def _is_observable(self): # Whether this metric is observable, i.e. # * a metric without label names and values, or # * the child of a labelled metric. return not self._labelnames or (self._labelnames and self._labelvalues) def _raise_if_not_observable(self): # Functions that mutate the state of the metric, for example incrementing # a counter, will fail if the metric is not observable, because only if a # metric is observable will the value be initialized. if not self._is_observable(): raise ValueError('%s metric is missing label values' % str(self._type)) def _is_parent(self): return self._labelnames and not self._labelvalues def _get_metric(self): return Metric(self._name, self._documentation, self._type, self._unit) def describe(self): return [self._get_metric()] def collect(self): metric = self._get_metric() for suffix, labels, value in self._samples(): metric.add_sample(self._name + suffix, labels, value) return [metric] def __str__(self): return "{0}:{1}".format(self._type, self._name) def __repr__(self): metric_type = type(self) return "{0}.{1}({2})".format(metric_type.__module__, metric_type.__name__, self._name) def __init__(self, name, documentation, labelnames=(), namespace='', subsystem='', unit='', registry=REGISTRY, labelvalues=None, ): self._name = _build_full_name(self._type, name, namespace, subsystem, unit) self._labelnames = _validate_labelnames(self, labelnames) self._labelvalues = tuple(labelvalues or ()) self._kwargs = {} self._documentation = documentation self._unit = unit if not METRIC_NAME_RE.match(self._name): raise ValueError('Invalid metric name: ' + self._name) if self._is_parent(): # Prepare the fields needed for child metrics. self._lock = Lock() self._metrics = {} if self._is_observable(): self._metric_init() if not self._labelvalues: # Register the multi-wrapper parent metric, or if a label-less metric, the whole shebang. if registry: registry.register(self) def labels(self, *labelvalues, **labelkwargs): """Return the child for the given labelset. All metrics can have labels, allowing grouping of related time series. Taking a counter as an example: from prometheus_client import Counter c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint']) c.labels('get', '/').inc() c.labels('post', '/submit').inc() Labels can also be provided as keyword arguments: from prometheus_client import Counter c = Counter('my_requests_total', 'HTTP Failures', ['method', 'endpoint']) c.labels(method='get', endpoint='/').inc() c.labels(method='post', endpoint='/submit').inc() See the best practices on [naming](http://prometheus.io/docs/practices/naming/) and [labels](http://prometheus.io/docs/practices/instrumentation/#use-labels). """ if not self._labelnames: raise ValueError('No label names were set when constructing %s' % self) if self._labelvalues: raise ValueError('%s already has labels set (%s); can not chain calls to .labels()' % ( self, dict(zip(self._labelnames, self._labelvalues)) )) if labelvalues and labelkwargs: raise ValueError("Can't pass both *args and **kwargs") if labelkwargs: if sorted(labelkwargs) != sorted(self._labelnames): raise ValueError('Incorrect label names') labelvalues = tuple(unicode(labelkwargs[l]) for l in self._labelnames) else: if len(labelvalues) != len(self._labelnames): raise ValueError('Incorrect label count') labelvalues = tuple(unicode(l) for l in labelvalues) with self._lock: if labelvalues not in self._metrics: self._metrics[labelvalues] = self.__class__( self._name, documentation=self._documentation, labelnames=self._labelnames, unit=self._unit, labelvalues=labelvalues, **self._kwargs ) return self._metrics[labelvalues] def remove(self, *labelvalues): if not self._labelnames: raise ValueError('No label names were set when constructing %s' % self) """Remove the given labelset from the metric.""" if len(labelvalues) != len(self._labelnames): raise ValueError('Incorrect label count (expected %d, got %s)' % (len(self._labelnames), labelvalues)) labelvalues = tuple(unicode(l) for l in labelvalues) with self._lock: del self._metrics[labelvalues] def _samples(self): if self._is_parent(): return self._multi_samples() else: return self._child_samples() def _multi_samples(self): with self._lock: metrics = self._metrics.copy() for labels, metric in metrics.items(): series_labels = list(zip(self._labelnames, labels)) for suffix, sample_labels, value in metric._samples(): yield (suffix, dict(series_labels + list(sample_labels.items())), value) def _child_samples(self): # pragma: no cover raise NotImplementedError('_child_samples() must be implemented by %r' % self) def _metric_init(self): # pragma: no cover """ Initialize the metric object as a child, i.e. when it has labels (if any) set. This is factored as a separate function to allow for deferred initialization. """ raise NotImplementedError('_metric_init() must be implemented by %r' % self) class Counter(MetricWrapperBase): """A Counter tracks counts of events or running totals. Example use cases for Counters: - Number of requests processed - Number of items that were inserted into a queue - Total amount of data that a system has processed Counters can only go up (and be reset when the process restarts). If your use case can go down, you should use a Gauge instead. An example for a Counter: from prometheus_client import Counter c = Counter('my_failures_total', 'Description of counter') c.inc() # Increment by 1 c.inc(1.6) # Increment by given value There are utilities to count exceptions raised: @c.count_exceptions() def f(): pass with c.count_exceptions(): pass # Count only one type of exception with c.count_exceptions(ValueError): pass """ _type = 'counter' def _metric_init(self): self._value = values.ValueClass(self._type, self._name, self._name + '_total', self._labelnames, self._labelvalues) self._created = time.time() def inc(self, amount=1): """Increment counter by the given amount.""" if amount < 0: raise ValueError('Counters can only be incremented by non-negative amounts.') self._value.inc(amount) def count_exceptions(self, exception=Exception): """Count exceptions in a block of code or function. Can be used as a function decorator or context manager. Increments the counter when an exception of the given type is raised up out of the code. """ self._raise_if_not_observable() return ExceptionCounter(self, exception) def _child_samples(self): return ( ('_total', {}, self._value.get()), ('_created', {}, self._created), ) class Gauge(MetricWrapperBase): """Gauge metric, to report instantaneous values. Examples of Gauges include: - Inprogress requests - Number of items in a queue - Free memory - Total memory - Temperature Gauges can go both up and down. from prometheus_client import Gauge g = Gauge('my_inprogress_requests', 'Description of gauge') g.inc() # Increment by 1 g.dec(10) # Decrement by given value g.set(4.2) # Set to a given value There are utilities for common use cases: g.set_to_current_time() # Set to current unixtime # Increment when entered, decrement when exited. @g.track_inprogress() def f(): pass with g.track_inprogress(): pass A Gauge can also take its value from a callback: d = Gauge('data_objects', 'Number of objects') my_dict = {} d.set_function(lambda: len(my_dict)) """ _type = 'gauge' _MULTIPROC_MODES = frozenset(('min', 'max', 'livesum', 'liveall', 'all')) def __init__(self, name, documentation, labelnames=(), namespace='', subsystem='', unit='', registry=REGISTRY, labelvalues=None, multiprocess_mode='all', ): self._multiprocess_mode = multiprocess_mode if multiprocess_mode not in self._MULTIPROC_MODES: raise ValueError('Invalid multiprocess mode: ' + multiprocess_mode) super(Gauge, self).__init__( name=name, documentation=documentation, labelnames=labelnames, namespace=namespace, subsystem=subsystem, unit=unit, registry=registry, labelvalues=labelvalues, ) self._kwargs['multiprocess_mode'] = self._multiprocess_mode def _metric_init(self): self._value = values.ValueClass( self._type, self._name, self._name, self._labelnames, self._labelvalues, multiprocess_mode=self._multiprocess_mode ) def inc(self, amount=1): """Increment gauge by the given amount.""" self._value.inc(amount) def dec(self, amount=1): """Decrement gauge by the given amount.""" self._value.inc(-amount) def set(self, value): """Set gauge to the given value.""" self._value.set(float(value)) def set_to_current_time(self): """Set gauge to the current unixtime.""" self.set(time.time()) def track_inprogress(self): """Track inprogress blocks of code or functions. Can be used as a function decorator or context manager. Increments the gauge when the code is entered, and decrements when it is exited. """ self._raise_if_not_observable() return InprogressTracker(self) def time(self): """Time a block of code or function, and set the duration in seconds. Can be used as a function decorator or context manager. """ self._raise_if_not_observable() return Timer(self.set) def set_function(self, f): """Call the provided function to return the Gauge value. The function must return a float, and may be called from multiple threads. All other methods of the Gauge become NOOPs. """ def samples(self): return (('', {}, float(f())),) self._child_samples = create_bound_method(samples, self) def _child_samples(self): return (('', {}, self._value.get()),) class Summary(MetricWrapperBase): """A Summary tracks the size and number of events. Example use cases for Summaries: - Response latency - Request size Example for a Summary: from prometheus_client import Summary s = Summary('request_size_bytes', 'Request size (bytes)') s.observe(512) # Observe 512 (bytes) Example for a Summary using time: from prometheus_client import Summary REQUEST_TIME = Summary('response_latency_seconds', 'Response latency (seconds)') @REQUEST_TIME.time() def create_response(request): '''A dummy function''' time.sleep(1) Example for using the same Summary object as a context manager: with REQUEST_TIME.time(): pass # Logic to be timed """ _type = 'summary' _reserved_labelnames = ['quantile'] def _metric_init(self): self._count = values.ValueClass(self._type, self._name, self._name + '_count', self._labelnames, self._labelvalues) self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues) self._created = time.time() def observe(self, amount): """Observe the given amount.""" self._count.inc(1) self._sum.inc(amount) def time(self): """Time a block of code or function, and observe the duration in seconds. Can be used as a function decorator or context manager. """ self._raise_if_not_observable() return Timer(self.observe) def _child_samples(self): return ( ('_count', {}, self._count.get()), ('_sum', {}, self._sum.get()), ('_created', {}, self._created)) class Histogram(MetricWrapperBase): """A Histogram tracks the size and number of events in buckets. You can use Histograms for aggregatable calculation of quantiles. Example use cases: - Response latency - Request size Example for a Histogram: from prometheus_client import Histogram h = Histogram('request_size_bytes', 'Request size (bytes)') h.observe(512) # Observe 512 (bytes) Example for a Histogram using time: from prometheus_client import Histogram REQUEST_TIME = Histogram('response_latency_seconds', 'Response latency (seconds)') @REQUEST_TIME.time() def create_response(request): '''A dummy function''' time.sleep(1) Example of using the same Histogram object as a context manager: with REQUEST_TIME.time(): pass # Logic to be timed The default buckets are intended to cover a typical web/rpc request from milliseconds to seconds. They can be overridden by passing `buckets` keyword argument to `Histogram`. """ _type = 'histogram' _reserved_labelnames = ['le'] DEFAULT_BUCKETS = (.005, .01, .025, .05, .075, .1, .25, .5, .75, 1.0, 2.5, 5.0, 7.5, 10.0, INF) def __init__(self, name, documentation, labelnames=(), namespace='', subsystem='', unit='', registry=REGISTRY, labelvalues=None, buckets=DEFAULT_BUCKETS, ): self._prepare_buckets(buckets) super(Histogram, self).__init__( name=name, documentation=documentation, labelnames=labelnames, namespace=namespace, subsystem=subsystem, unit=unit, registry=registry, labelvalues=labelvalues, ) self._kwargs['buckets'] = buckets def _prepare_buckets(self, buckets): buckets = [float(b) for b in buckets] if buckets != sorted(buckets): # This is probably an error on the part of the user, # so raise rather than sorting for them. raise ValueError('Buckets not in sorted order') if buckets and buckets[-1] != INF: buckets.append(INF) if len(buckets) < 2: raise ValueError('Must have at least two buckets') self._upper_bounds = buckets def _metric_init(self): self._buckets = [] self._created = time.time() bucket_labelnames = self._labelnames + ('le',) self._sum = values.ValueClass(self._type, self._name, self._name + '_sum', self._labelnames, self._labelvalues) for b in self._upper_bounds: self._buckets.append(values.ValueClass( self._type, self._name, self._name + '_bucket', bucket_labelnames, self._labelvalues + (floatToGoString(b),)) ) def observe(self, amount): """Observe the given amount.""" self._sum.inc(amount) for i, bound in enumerate(self._upper_bounds): if amount <= bound: self._buckets[i].inc(1) break def time(self): """Time a block of code or function, and observe the duration in seconds. Can be used as a function decorator or context manager. """ return Timer(self.observe) def _child_samples(self): samples = [] acc = 0 for i, bound in enumerate(self._upper_bounds): acc += self._buckets[i].get() samples.append(('_bucket', {'le': floatToGoString(bound)}, acc)) samples.append(('_count', {}, acc)) if self._upper_bounds[0] >= 0: samples.append(('_sum', {}, self._sum.get())) samples.append(('_created', {}, self._created)) return tuple(samples) class Info(MetricWrapperBase): """Info metric, key-value pairs. Examples of Info include: - Build information - Version information - Potential target metadata Example usage: from prometheus_client import Info i = Info('my_build', 'Description of info') i.info({'version': '1.2.3', 'buildhost': 'foo@bar'}) Info metrics do not work in multiprocess mode. """ _type = 'info' def _metric_init(self): self._labelname_set = set(self._labelnames) self._lock = Lock() self._value = {} def info(self, val): """Set info metric.""" if self._labelname_set.intersection(val.keys()): raise ValueError('Overlapping labels for Info metric, metric: %s child: %s' % ( self._labelnames, val)) with self._lock: self._value = dict(val) def _child_samples(self): with self._lock: return (('_info', self._value, 1.0,),) class Enum(MetricWrapperBase): """Enum metric, which of a set of states is true. Example usage: from prometheus_client import Enum e = Enum('task_state', 'Description of enum', states=['starting', 'running', 'stopped']) e.state('running') The first listed state will be the default. Enum metrics do not work in multiprocess mode. """ _type = 'stateset' def __init__(self, name, documentation, labelnames=(), namespace='', subsystem='', unit='', registry=REGISTRY, labelvalues=None, states=None, ): super(Enum, self).__init__( name=name, documentation=documentation, labelnames=labelnames, namespace=namespace, subsystem=subsystem, unit=unit, registry=registry, labelvalues=labelvalues, ) if name in labelnames: raise ValueError('Overlapping labels for Enum metric: %s' % (name,)) if not states: raise ValueError('No states provided for Enum metric: %s' % (name,)) self._kwargs['states'] = self._states = states def _metric_init(self): self._value = 0 self._lock = Lock() def state(self, state): """Set enum metric state.""" self._raise_if_not_observable() with self._lock: self._value = self._states.index(state) def _child_samples(self): with self._lock: return [ ('', {self._name: s}, 1 if i == self._value else 0,) for i, s in enumerate(self._states) ]