AlkantarClanX12
Current Path : /opt/alt/python39/lib64/python3.9/__pycache__/ |
Current File : //opt/alt/python39/lib64/python3.9/__pycache__/statistics.cpython-39.opt-1.pyc |
a R�f�� � @ s� d Z g d�ZddlZddlZddlZddlmZ ddlmZ ddl m Z ddlmZm Z ddlmZmZmZmZmZmZmZmZ dd lmZ dd lmZ G dd� de�ZdGd d�Zdd� Zdd� Zdd� Zdd� Z dd� Z!dd� Z"dHdd�Z#dd� Z$d d!� Z%d"d#� Z&d$d%� Z'd&d'� Z(d(d)� Z)d*d+� Z*dId-d.�Z+d/d0� Z,d1d2� Z-d3d4d5�d6d7�Z.dJd8d9�Z/dKd:d;�Z0dLd<d=�Z1dMd>d?�Z2dNd@dA�Z3dBdC� Z4zddDl5m4Z4 W n e6�y� Y n0 G dEdF� dF�Z7dS )Oam Basic statistics module. This module provides functions for calculating statistics of data, including averages, variance, and standard deviation. Calculating averages -------------------- ================== ================================================== Function Description ================== ================================================== mean Arithmetic mean (average) of data. fmean Fast, floating point arithmetic mean. geometric_mean Geometric mean of data. harmonic_mean Harmonic mean of data. median Median (middle value) of data. median_low Low median of data. median_high High median of data. median_grouped Median, or 50th percentile, of grouped data. mode Mode (most common value) of data. multimode List of modes (most common values of data). quantiles Divide data into intervals with equal probability. ================== ================================================== Calculate the arithmetic mean ("the average") of data: >>> mean([-1.0, 2.5, 3.25, 5.75]) 2.625 Calculate the standard median of discrete data: >>> median([2, 3, 4, 5]) 3.5 Calculate the median, or 50th percentile, of data grouped into class intervals centred on the data values provided. E.g. if your data points are rounded to the nearest whole number: >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS 2.8333333333... This should be interpreted in this way: you have two data points in the class interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in the class interval 3.5-4.5. The median of these data points is 2.8333... Calculating variability or spread --------------------------------- ================== ============================================= Function Description ================== ============================================= pvariance Population variance of data. variance Sample variance of data. pstdev Population standard deviation of data. stdev Sample standard deviation of data. ================== ============================================= Calculate the standard deviation of sample data: >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS 4.38961843444... If you have previously calculated the mean, you can pass it as the optional second argument to the four "spread" functions to avoid recalculating it: >>> data = [1, 2, 2, 4, 4, 4, 5, 6] >>> mu = mean(data) >>> pvariance(data, mu) 2.5 Exceptions ---------- A single exception is defined: StatisticsError is a subclass of ValueError. )� NormalDist�StatisticsError�fmean�geometric_mean� harmonic_mean�mean�median�median_grouped�median_high� median_low�mode� multimode�pstdev� pvariance� quantiles�stdev�variance� N��Fraction)�Decimal)�groupby)�bisect_left�bisect_right)�hypot�sqrt�fabs�exp�erf�tau�log�fsum)� itemgetter)�Counterc @ s e Zd ZdS )r N)�__name__� __module__�__qualname__� r&