AlkantarClanX12

Your IP : 3.145.61.199


Current Path : /home/thanudqk/128shen.com/wp-content/plugins/tablepress/libraries/vendor/Complex/
Upload File :
Current File : //home/thanudqk/128shen.com/wp-content/plugins/tablepress/libraries/vendor/Complex/Functions.php

<?php

namespace TablePress\Complex;

use InvalidArgumentException;

class Functions
{
	/**
	 * Returns the absolute value (modulus) of a complex number.
	 * Also known as the rho of the complex number, i.e. the distance/radius
	 *   from the centrepoint to the representation of the number in polar coordinates.
	 *
	 * This function is a synonym for rho()
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    float            The absolute (or rho) value of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 *
	 * @see    rho
	 *
	 */
	public static function abs($complex): float
	{
		return self::rho($complex);
	}

	/**
	 * Returns the inverse cosine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse cosine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function acos($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		$invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
		$adjust = new Complex(
			$complex->getReal() - $invsqrt->getImaginary(),
			$complex->getImaginary() + $invsqrt->getReal()
		);
		$log = self::ln($adjust);

		return new Complex(
			$log->getImaginary(),
			-1 * $log->getReal()
		);
	}

	/**
	 * Returns the inverse hyperbolic cosine of a complex number.
	 *
	 * Formula from Wolfram Alpha:
	 *   cosh^(-1)z = ln(z + sqrt(z + 1) sqrt(z - 1)).
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic cosine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function acosh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal() && ($complex->getReal() > 1)) {
			return new Complex(\acosh($complex->getReal()));
		}

		$acosh = self::ln(
			Operations::add(
				$complex,
				Operations::multiply(
					self::sqrt(Operations::add($complex, 1)),
					self::sqrt(Operations::subtract($complex, 1))
				)
			)
		);

		return $acosh;
	}

	/**
	 * Returns the inverse cotangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse cotangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function acot($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return self::atan(self::inverse($complex));
	}

	/**
	 * Returns the inverse hyperbolic cotangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic cotangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function acoth($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return self::atanh(self::inverse($complex));
	}

	/**
	 * Returns the inverse cosecant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse cosecant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function acsc($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::asin(self::inverse($complex));
	}

	/**
	 * Returns the inverse hyperbolic cosecant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic cosecant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function acsch($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::asinh(self::inverse($complex));
	}

	/**
	 * Returns the argument of a complex number.
	 * Also known as the theta of the complex number, i.e. the angle in radians
	 *   from the real axis to the representation of the number in polar coordinates.
	 *
	 * This function is a synonym for theta()
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    float            The argument (or theta) value of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 *
	 * @see    theta
	 */
	public static function argument($complex): float
	{
		return self::theta($complex);
	}

	/**
	 * Returns the inverse secant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse secant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function asec($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::acos(self::inverse($complex));
	}

	/**
	 * Returns the inverse hyperbolic secant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic secant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function asech($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::acosh(self::inverse($complex));
	}

	/**
	 * Returns the inverse sine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse sine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function asin($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		$invsqrt = self::sqrt(Operations::subtract(1, Operations::multiply($complex, $complex)));
		$adjust = new Complex(
			$invsqrt->getReal() - $complex->getImaginary(),
			$invsqrt->getImaginary() + $complex->getReal()
		);
		$log = self::ln($adjust);

		return new Complex(
			$log->getImaginary(),
			-1 * $log->getReal()
		);
	}

	/**
	 * Returns the inverse hyperbolic sine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic sine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function asinh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal() && ($complex->getReal() > 1)) {
			return new Complex(\asinh($complex->getReal()));
		}

		$asinh = clone $complex;
		$asinh = $asinh->reverse()
			->invertReal();
		$asinh = self::asin($asinh);

		return $asinh->reverse()
			->invertImaginary();
	}

	/**
	 * Returns the inverse tangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse tangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function atan($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\atan($complex->getReal()));
		}

		$t1Value = new Complex(-1 * $complex->getImaginary(), $complex->getReal());
		$uValue = new Complex(1, 0);

		$d1Value = clone $uValue;
		$d1Value = Operations::subtract($d1Value, $t1Value);
		$d2Value = Operations::add($t1Value, $uValue);
		$uResult = $d1Value->divideBy($d2Value);
		$uResult = self::ln($uResult);

		$realMultiplier = -0.5;
		$imaginaryMultiplier = 0.5;

		if (abs($uResult->getImaginary()) === M_PI) {
			// If we have an imaginary value at the max or min (PI or -PI), then we need to ensure
			//    that the primary is assigned for the correct quadrant.
			$realMultiplier = (
				($uResult->getImaginary() === M_PI && $uResult->getReal() > 0.0) ||
				($uResult->getImaginary() === -M_PI && $uResult->getReal() < 0.0)
			) ? 0.5 : -0.5;
		}

		return new Complex(
			$uResult->getImaginary() * $realMultiplier,
			$uResult->getReal() * $imaginaryMultiplier,
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the inverse hyperbolic tangent of a complex number.
	 *
	 * Formula from Wolfram Alpha:
	 *  tanh^(-1)z = 1/2 [ln(1 + z) - ln(1 - z)].
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse hyperbolic tangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function atanh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			$real = $complex->getReal();
			if ($real >= -1.0 && $real <= 1.0) {
				return new Complex(\atanh($real));
			} else {
				return new Complex(\atanh(1 / $real), (($real < 0.0) ? M_PI_2 : -1 * M_PI_2));
			}
		}

		$atanh = Operations::multiply(
			Operations::subtract(
				self::ln(Operations::add(1.0, $complex)),
				self::ln(Operations::subtract(1.0, $complex))
			),
			0.5
		);

		return $atanh;
	}

	/**
	 * Returns the complex conjugate of a complex number
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The conjugate of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function conjugate($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return new Complex(
			$complex->getReal(),
			-1 * $complex->getImaginary(),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the cosine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The cosine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function cos($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\cos($complex->getReal()));
		}

		return self::conjugate(
			new Complex(
				\cos($complex->getReal()) * \cosh($complex->getImaginary()),
				\sin($complex->getReal()) * \sinh($complex->getImaginary()),
				$complex->getSuffix()
			)
		);
	}

	/**
	 * Returns the hyperbolic cosine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic cosine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function cosh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\cosh($complex->getReal()));
		}

		return new Complex(
			\cosh($complex->getReal()) * \cos($complex->getImaginary()),
			\sinh($complex->getReal()) * \sin($complex->getImaginary()),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the cotangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The cotangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function cot($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::inverse(self::tan($complex));
	}

	/**
	 * Returns the hyperbolic cotangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic cotangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function coth($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return self::inverse(self::tanh($complex));
	}

	/**
	 * Returns the cosecant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The cosecant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function csc($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::inverse(self::sin($complex));
	}

	/**
	 * Returns the hyperbolic cosecant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic cosecant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function csch($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			return new Complex(INF);
		}

		return self::inverse(self::sinh($complex));
	}

	/**
	 * Returns the exponential of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The exponential of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function exp($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if (($complex->getReal() == 0.0) && (\abs($complex->getImaginary()) == M_PI)) {
			return new Complex(-1.0, 0.0);
		}

		$rho = \exp($complex->getReal());

		return new Complex(
			$rho * \cos($complex->getImaginary()),
			$rho * \sin($complex->getImaginary()),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the inverse of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The inverse of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    InvalidArgumentException    If function would result in a division by zero
	 */
	public static function inverse($complex): TablePress\Complex
	{
		$complex = clone Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0 && $complex->getImaginary() == 0.0) {
			throw new InvalidArgumentException('Division by zero');
		}

		return $complex->divideInto(1.0);
	}

	/**
	 * Returns the natural logarithm of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The natural logarithm of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
	 */
	public static function ln($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
			throw new InvalidArgumentException();
		}

		return new Complex(
			\log(self::rho($complex)),
			self::theta($complex),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the base-2 logarithm of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The base-2 logarithm of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
	 */
	public static function log2($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
			throw new InvalidArgumentException();
		} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
			return new Complex(\log($complex->getReal(), 2), 0.0, $complex->getSuffix());
		}

		return self::ln($complex)
			->multiply(\log(Complex::EULER, 2));
	}

	/**
	 * Returns the common logarithm (base 10) of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The common logarithm (base 10) of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    InvalidArgumentException  If the real and the imaginary parts are both zero
	 */
	public static function log10($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if (($complex->getReal() == 0.0) && ($complex->getImaginary() == 0.0)) {
			throw new InvalidArgumentException();
		} elseif (($complex->getReal() > 0.0) && ($complex->getImaginary() == 0.0)) {
			return new Complex(\log10($complex->getReal()), 0.0, $complex->getSuffix());
		}

		return self::ln($complex)
			->multiply(\log10(Complex::EULER));
	}

	/**
	 * Returns the negative of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The negative value of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 *
	 * @see    rho
	 *
	 */
	public static function negative($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return new Complex(
			-1 * $complex->getReal(),
			-1 * $complex->getImaginary(),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns a complex number raised to a power.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @param     float|integer    $power      The power to raise this value to
	 * @return    TablePress\Complex          The complex argument raised to the real power.
	 * @throws    Exception        If the power argument isn't a valid real
	 */
	public static function pow($complex, $power): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if (!is_numeric($power)) {
			throw new Exception('Power argument must be a real number');
		}

		if ($complex->getImaginary() == 0.0 && $complex->getReal() >= 0.0) {
			return new Complex(\pow($complex->getReal(), $power));
		}

		$rValue = \sqrt(($complex->getReal() * $complex->getReal()) + ($complex->getImaginary() * $complex->getImaginary()));
		$rPower = \pow($rValue, $power);
		$theta = $complex->argument() * $power;
		if ($theta == 0) {
			return new Complex(1);
		}

		return new Complex($rPower * \cos($theta), $rPower * \sin($theta), $complex->getSuffix());
	}

	/**
	 * Returns the rho of a complex number.
	 * This is the distance/radius from the centrepoint to the representation of the number in polar coordinates.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    float            The rho value of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function rho($complex): float
	{
		$complex = Complex::validateComplexArgument($complex);

		return \sqrt(
			($complex->getReal() * $complex->getReal()) +
			($complex->getImaginary() * $complex->getImaginary())
		);
	}

	/**
	 * Returns the secant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The secant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function sec($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return self::inverse(self::cos($complex));
	}

	/**
	 * Returns the hyperbolic secant of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic secant of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function sech($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		return self::inverse(self::cosh($complex));
	}

	/**
	 * Returns the sine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The sine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function sin($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\sin($complex->getReal()));
		}

		return new Complex(
			\sin($complex->getReal()) * \cosh($complex->getImaginary()),
			\cos($complex->getReal()) * \sinh($complex->getImaginary()),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the hyperbolic sine of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic sine of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function sinh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\sinh($complex->getReal()));
		}

		return new Complex(
			\sinh($complex->getReal()) * \cos($complex->getImaginary()),
			\cosh($complex->getReal()) * \sin($complex->getImaginary()),
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the square root of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The Square root of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function sqrt($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		$theta = self::theta($complex);
		$delta1 = \cos($theta / 2);
		$delta2 = \sin($theta / 2);
		$rho = \sqrt(self::rho($complex));

		return new Complex($delta1 * $rho, $delta2 * $rho, $complex->getSuffix());
	}

	/**
	 * Returns the tangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The tangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    InvalidArgumentException    If function would result in a division by zero
	 */
	public static function tan($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->isReal()) {
			return new Complex(\tan($complex->getReal()));
		}

		$real = $complex->getReal();
		$imaginary = $complex->getImaginary();
		$divisor = 1 + \pow(\tan($real), 2) * \pow(\tanh($imaginary), 2);
		if ($divisor == 0.0) {
			throw new InvalidArgumentException('Division by zero');
		}

		return new Complex(
			\pow(self::sech($imaginary)->getReal(), 2) * \tan($real) / $divisor,
			\pow(self::sec($real)->getReal(), 2) * \tanh($imaginary) / $divisor,
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the hyperbolic tangent of a complex number.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    TablePress\Complex          The hyperbolic tangent of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 * @throws    \InvalidArgumentException    If function would result in a division by zero
	 */
	public static function tanh($complex): TablePress\Complex
	{
		$complex = Complex::validateComplexArgument($complex);
		$real = $complex->getReal();
		$imaginary = $complex->getImaginary();
		$divisor = \cos($imaginary) * \cos($imaginary) + \sinh($real) * \sinh($real);
		if ($divisor == 0.0) {
			throw new InvalidArgumentException('Division by zero');
		}

		return new Complex(
			\sinh($real) * \cosh($real) / $divisor,
			0.5 * \sin(2 * $imaginary) / $divisor,
			$complex->getSuffix()
		);
	}

	/**
	 * Returns the theta of a complex number.
	 *   This is the angle in radians from the real axis to the representation of the number in polar coordinates.
	 *
	 * @param     TablePress\Complex|mixed    $complex    TablePress\Complex number or a numeric value.
	 * @return    float            The theta value of the complex argument.
	 * @throws    Exception        If argument isn't a valid real or complex number.
	 */
	public static function theta($complex): float
	{
		$complex = Complex::validateComplexArgument($complex);

		if ($complex->getReal() == 0.0) {
			if ($complex->isReal()) {
				return 0.0;
			} elseif ($complex->getImaginary() < 0.0) {
				return M_PI / -2;
			}
			return M_PI / 2;
		} elseif ($complex->getReal() > 0.0) {
			return \atan($complex->getImaginary() / $complex->getReal());
		} elseif ($complex->getImaginary() < 0.0) {
			return -(M_PI - \atan(\abs($complex->getImaginary()) / \abs($complex->getReal())));
		}

		return M_PI - \atan($complex->getImaginary() / \abs($complex->getReal()));
	}
}